25 research outputs found

    Direct Visualization by Cryo-EM of the Mycobacterial Capsular Layer: A Labile Structure Containing ESX-1-Secreted Proteins

    Get PDF
    The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, α-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Lipids assist the membrane insertion of a BAM-independent outer membrane protein

    No full text
    Like several other large, multimeric bacterial outer membrane proteins (OMPs), the assembly of the Klebsiella oxytoca OMP PulD does not rely on the universally conserved β-barrel assembly machinery (BAM) that catalyses outer membrane insertion. The only other factor known to interact with PulD prior to or during outer membrane targeting and assembly is the cognate chaperone PulS. Here, in vitro translation-transcription coupled PulD folding demonstrated that PulS does not act during the membrane insertion of PulD, and engineered in vivo site-specific cross-linking between PulD and PulS showed that PulS binding does not prevent membrane insertion. In vitro folding kinetics revealed that PulD is atypical compared to BAM-dependent OMPs by inserting more rapidly into membranes containing E. coli phospholipids than into membranes containing lecithin. PulD folding was fast in diC(14:0)-phosphatidylethanolamine liposomes but not diC(14:0)-phosphatidylglycerol liposomes, and in diC(18:1)-phosphatidylcholine liposomes but not in diC(14:1)-phosphatidylcholine liposomes. These results suggest that PulD efficiently exploits the membrane composition to complete final steps in insertion and explain how PulD can assemble independently of any protein-assembly machinery. Lipid-assisted assembly in this manner might apply to other large OMPs whose assembly is BAM-independent
    corecore