5 research outputs found

    Metabolic Potential, Ecology and Presence of Associated Bacteria Is Reflected in Genomic Diversity of Mucoromycotina

    Get PDF
    Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e., Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e., U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e., M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e., Thamnidium elegans and Mucor saturninus). We complement computational genome annotation with experimental characteristics of their digestive capabilities, cell wall carbohydrate composition, and extensive total lipid profiles. These traits inferred from genome composition, e.g., in terms of identified encoded enzymes, are in accordance with experimental results. Finally, we link the presence of associated bacteria with observed characteristics. Thamnidium elegans genome harbors an additional, complete genome of an associated bacterium classified to Paenibacillus sp. This fungus displays multiple altered traits compared to the remaining isolates, regardless of their evolutionary distance. For instance, it has expanded carbon assimilation capabilities, e.g., efficiently degrades carboxylic acids, and has a higher diacylglycerol:triacylglycerol ratio and skewed phospholipid composition which suggests a more rigid cellular membrane. The bacterium can complement the host enzymatic capabilities, alter the fungal metabolism, cell membrane composition but does not change the composition of the cell wall of the fungus. Comparison of early-diverging Umbelopsidales with evolutionary younger Mucorales points at several subtle differences particularly in their carbon source preferences and encoded carbohydrate repertoire. Nevertheless, all tested Mucoromycotina share features including the ability to produce 18:3 gamma-linoleic acid, use TAG as the storage lipid and have fucose as a cell wall component

    Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties

    No full text
    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups.This work has been supported by the Spanish Ministerio de Economia y Competitividad (CTQ2013-41514-P) and the National Center for Research and Development (Poland; TANGO1/266340/NCBR/2015)Peer reviewe

    Hydrophilicity and flexibility of the spacer as critical parameters on the aggregation behavior of long alkyl chain cationic gemini surfactants in aqueous solution

    No full text
    Series of quaternary ammonium-based gemini surfactants with long alkyl chains (C12 and C18) containing different spacers and substituents attached to the polar head group have been synthesized and their aggregation properties in aqueous solution examined. The effect of the hydrophobic chain, the nature and structure of the spacer group and the polarity of the head group on the aggregation behavior of such dimeric surfactants has been investigated. The critical micelle concentration (cmc) values of gemini surfactants in aqueous solution were determined by conductivity, steady state fluorescence and potentiometric measurements. The size of aggregates formed by investigated amphiphiles above the cmc in aqueous solution was examined by dynamic light scattering. Gemini surfactants show cmc values significantly lower than those of comparable single chain surfactants. The tendency of trimeric surfactants with a rigid spacer to form aggregates is higher than that of the corresponding dimeric surfactants. As occurs for monomeric ionic surfactants, the cmc of gemini surfactants decreases with the elongation of the hydrophobic chain. However, the effect of lengthening the alkyl chain on the cmc depends on the structure of the spacer. C12 gemini surfactants with a rigid hydrophobic spacer exhibit cmc higher than those containing a flexible hydrophobic spacer. For gemini surfactants with C18 alkyl chains this effect is even more pronounced and leads to differences in cmc values greater than one order of magnitude. The structure of the spacer, flexible or rigid chain, has been found to be a critical parameter on the self-assembly of long chain gemini surfactants. Spherical micelles are spontaneously formed above the cmc for C12 gemini surfactants, whereas trimeric and C18 gemini surfactants seems to form vesicle-like aggregates when self-aggregation occurs.This work has been supported by the Spanish Ministerio de Economia y Competitividad (CTQ2013-41514-P) and the National Center for Research and Development (TANGO1/266340/NCBR/2015). O.K. thanks European Commission for financial support within Erasmus + Programme.Peer reviewe
    corecore