1,965 research outputs found
Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids
We show experimentally that in a supercooled liquid composed of molecules
with internal degrees of freedom the internal modes contribute to the frequency
dependent shear viscosity and damping of transverse phonons, which results in
an additional broadening of the transverse Brillouin lines. Earlier, only the
effect of internal modes on the frequency dependent bulk viscosity and damping
of longitudinal phonons was observed and explained theoretically in the limit
of weak coupling of internal degrees of freedom to translational motion. A new
theory is needed to describe this new effect. We also demonstrate, that the
contributions of structural relaxation and internal processes to the width of
the Brillouin lines can be separated by measurements under high pressure
Observation of the onset of strong scattering on high frequency acoustic phonons in densified silica glass
The linewidth of longitudinal acoustic waves in densified silica glass is
obtained by inelastic x-ray scattering. It increases with a high power alpha of
the frequency up to a crossover where the waves experience strong scattering.
We find that \alpha is at least 4, and probably larger. Resonance and
hybridization of acoustic waves with the boson-peak modes seems to be a more
likely explanation for these findings than Rayleigh scattering from disorder.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter
NEXUS/Physics: An interdisciplinary repurposing of physics for biologists
In response to increasing calls for the reform of the undergraduate science
curriculum for life science majors and pre-medical students (Bio2010,
Scientific Foundations for Future Physicians, Vision & Change), an
interdisciplinary team has created NEXUS/Physics: a repurposing of an
introductory physics curriculum for the life sciences. The curriculum interacts
strongly and supportively with introductory biology and chemistry courses taken
by life sciences students, with the goal of helping students build general,
multi-discipline scientific competencies. In order to do this, our two-semester
NEXUS/Physics course sequence is positioned as a second year course so students
will have had some exposure to basic concepts in biology and chemistry.
NEXUS/Physics stresses interdisciplinary examples and the content differs
markedly from traditional introductory physics to facilitate this. It extends
the discussion of energy to include interatomic potentials and chemical
reactions, the discussion of thermodynamics to include enthalpy and Gibbs free
energy, and includes a serious discussion of random vs. coherent motion
including diffusion. The development of instructional materials is coordinated
with careful education research. Both the new content and the results of the
research are described in a series of papers for which this paper serves as an
overview and context.Comment: 12 page
Considering the role of cognitive control in expert performance
© 2014, Springer Science+Business Media Dordrecht. Dreyfus and Dreyfus’ (1986) influential phenomenological analysis of skill acquisition proposes that expert performance is guided by non-cognitive responses which are fast, effortless and apparently intuitive in nature. Although this model has been criticised (e.g., by Breivik Journal of Philosophy of Sport, 34, 116–134 2007, Journal of the Philosophy of Sport, 40, 85–106 2013; Eriksen 2010; Montero Inquiry:An interdisciplinary Journal of Philosophy, 53, 105–122 2010; Montero and Evans 2011) for over-emphasising the role that intuition plays in facilitating skilled performance, it does recognise that on occasions (e.g., when performance goes awry for some reason) a form of ‘detached deliberative rationality’ may be used by experts to improve their performance. However, Dreyfus and Dreyfus (1986) see no role for calculative problem solving or deliberation (i.e., drawing on rules or mental representations) when performance is going well. In the current paper, we draw on empirical evidence, insights from athletes, and phenomenological description to argue that ‘continuous improvement’ (i.e., the phenomenon whereby certain skilled performers appear to be capable of increasing their proficiency even though they are already experts; Toner and Moran 2014) among experts is mediated by cognitive (or executive) control in three distinct sporting situations (i.e., in training, during pre-performance routines, and while engaged in on-line skill execution). We conclude by arguing that Sutton et al. Journal of the British Society for Phenomenology, 42, 78–103 (2011) ‘applying intelligence to the reflexes’ (AIR) approach may help to elucidate the process by which expert performers achieve continuous improvement through analytical/mindful behaviour during training and competition
Light scattering spectra of supercooled molecular liquids
The light scattering spectra of molecular liquids are derived within a
generalized hydrodynamics. The wave vector and scattering angle dependences are
given in the most general case and the change of the spectral features from
liquid to solidlike is discussed without phenomenological model assumptions for
(general) dielectric systems without long-ranged order. Exact microscopic
expressions are derived for the frequency-dependent transport kernels,
generalized thermodynamic derivatives and the background spectra.Comment: 12 page
Dielectric and thermal relaxation in the energy landscape
We derive an energy landscape interpretation of dielectric relaxation times
in undercooled liquids, comparing it to the traditional Debye and
Gemant-DiMarzio-Bishop pictures. The interaction between different local
structural rearrangements in the energy landscape explains qualitatively the
recently observed splitting of the flow process into an initial and a final
stage. The initial mechanical relaxation stage is attributed to hopping
processes, the final thermal or structural relaxation stage to the decay of the
local double-well potentials. The energy landscape concept provides an
explanation for the equality of thermal and dielectric relaxation times. The
equality itself is once more demonstrated on the basis of literature data for
salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems,
Molveno 2006, submitted to Philosophical Magazin
Dynamics at a smeared phase transition
We investigate the effects of rare regions on the dynamics of Ising magnets
with planar defects, i.e., disorder perfectly correlated in two dimensions. In
these systems, the magnetic phase transition is smeared because static
long-range order can develop on isolated rare regions. We first study an
infinite-range model by numerically solving local dynamic mean-field equations.
Then we use extremal statistics and scaling arguments to discuss the dynamics
beyond mean-field theory. In the tail region of the smeared transition the
dynamics is even slower than in a conventional Griffiths phase: the spin
autocorrelation function decays like a stretched exponential at intermediate
times before approaching the exponentially small equilibrium value following a
power law at late times.Comment: 10 pages, 8eps figures included, final version as publishe
- …