588 research outputs found

    Identification of C38 colon adenocarcinoma growth under bevacizumab therapy and without therapy

    Get PDF
    Model identification allows to design different con- trol strategies for antiangiogenic cancer therapy, and create model-based treatment protocols. These model-based protocols can be more effective than the current ones, since they provide individual treatment for the patients. The aim of this paper is to investigate C38 colon adenocarcinoma growth in three different cases: (1) tumor growth without therapy, (2) tumor growth with one Avastin dose for a 18-day therapy (10 mg/kg), (3) tumor growth with one-tenth dose of control Avastin dose spread over 18 days. Parametric model identification was carried out for these three cases and the relationship between the measured tumor attributes (volume, mass and vascularization) was analyzed. Effect of low-dose therapy was also examined

    Molecular Motor of Double-Walled Carbon Nanotube Driven by Temperature Variation

    Full text link
    An elegant formula for coordinates of carbon atoms in a unit cell of a single-walled nanotube (SWNT) is presented and a new molecular motor of double-walled carbon nanotube whose inner tube is a long (8,4) SWNT and outer tube a short (14,8) SWNT is constructed. The interaction between inner an outer tubes is analytically derived by summing the Lennard-Jones potentials between atoms in inner and outer tubes. It is proved that the molecular motor in a thermal bath exhibits a directional motion with the temperature variation of the bath.Comment: 9 pages, 4 figures, revtex

    A summary of water-quality and salt marsh monitoring, Humboldt Bay, California

    Get PDF
    This report summarizes data-collection activities associated with the U.S. Geological Survey Humboldt Bay Water-Quality and Salt Marsh Monitoring Project. This work was undertaken to gain a comprehensive understanding ofwater-quality conditions, salt marsh accretion processes, marsh-edge erosion, and soil-carbon storage in Humboldt Bay, California. Multiparameter sondes recorded water temperature, specific conductance, and turbidity at a 15-minute timestep at two U.S. Geological Survey water-quality stations: Mad River Slough near Arcata, California (U.S. Geological Survey station 405219124085601) and (2) Hookton Slough near Loleta, California (U.S. Geological Survey station 404038124131801). At each station, discrete water samples were collected to develop surrogate regression models that were used to compute a continuous time seriesof suspended-sediment concentration from continuously measured turbidity. Data loggers recorded water depth at a 6-minute timestep in the primary tidal channels (Mad River Slough and Hookton Slough) in two adjacent marshes (Mad River marsh and Hookton marsh). The marsh monitoring network included five study marshes. Three marshes (Mad River, Manila, and Jacoby) are in the northern embayment of Humboldt Bay and two marshes (White and Hookton) are in the southern embayment. Surface deposition and elevation change were measured using deep rod surface elevation tables and feldspar marker horizons. Sediment characteristics and soil-carbon storage were measured using a total of 10 shallow cores, distributed across 5 study marshes, collected using an Eijkelkamp peat sampler. Rates of marsh edge erosion (2010–19) were quantified in four marshes (Mad River, Manila, Jacoby, and White) by estimating changes in the areal extent of the vegetated marsh plain using repeat aerial imagery and light detection and ranging (LiDAR)-derived elevation data. During the monitoring period (2016–19), the mean suspended-sediment concentration computed for Hookton Slough (50±20 milligrams per liter [mg/L]) was higher than Mad River Slough (18±7 mg/L). Uncertainty in mean suspended-sediment concentration values is reported using a 90-percent confidence interval. Across the five study marshes, elevation change (+1.8±0.6 millimeters per year[mm/yr]) and surface deposition (+2.5±0.5 mm/yr) were lower than published values of local sea-level rise (4.9±0.8 mm/yr), and mean carbon density was 0.029±0.005 grams of carbon per cubic centimeter. From 2010 to 2019, marsh edge erosion and soil carbon loss were greatest in low-elevation marshes with the marsh edge characterized by a gentle transition from mudflat to vegetated marsh (herein, ramped edge morphology) and larger wind-wave exposure. Jacoby Creek marsh experienced the greatest edge erosion. In total, marsh edge erosion was responsible for 62.3 metric tons of estuarine soil carbon storage loss across four study marshes. Salt marshes are an important component of coastal carbon, which is frequently referred to as “blue carbon.” The monitoring data presented in this report provide fundamental information needed to manage blue carbon stocks, assess marsh vulnerability, inform sea-level rise adaptation planning, and build coastal resiliency to climate change

    Molecular Motor Constructed from a Double-Walled Carbon Nanotube Driven by Axially Varying Voltage

    Full text link
    A new molecular motor is conceptually constructed from a double-walled carbon nanotube (DWNT) consisting of a long inner single-walled carbon nanotube (SWNT) and a short outer SWNT with different chirality. The interaction between inner and outer tubes is the sum of the Lennard-Jones potentials between carbon atoms in inner tube and those in outer one. Within the framework of Smoluchowski-Feynman ratchet, it is theoretically shown that this system in an isothermal bath will exhibit a unidirectional rotation in the presence of a varying axial electrical voltage.Comment: 11 pages + 3 figure

    Spin-polarized electric currents in diluted magnetic semiconductor heterostructures induced by terahertz and microwave radiation

    Get PDF
    We report on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells subjected to an in-plane external magnetic field and illuminated by microwave or terahertz radiation. The effect is studied in (Cd,Mn)Te/(Cd,Mg)Te quantum wells (QWs) and (In,Ga)As/InAlAs:Mn QWs belonging to the well known II-VI and III-V DMS material systems, as well as, in heterovalent AlSb/InAs/(Zn,Mn)Te QWs which represent a promising combination of II-VI and III-V semiconductors. Experimental data and developed theory demonstrate that the photocurrent originates from a spin-dependent scattering of free carriers by static defects or phonons in the Drude absorption of radiation and subsequent relaxation of carriers. We show that in DMS structures the efficiency of the current generation is drastically enhanced compared to non-magnetic semiconductors. The enhancement is caused by the exchange interaction of carrier spins with localized spins of magnetic ions resulting, on the one hand, in the giant Zeeman spin-splitting, and, on the other hand, in the spin-dependent carrier scattering by localized Mn2+ ions polarized by an external magnetic field.Comment: 14 pages, 13 figure
    corecore