© by Oldenbourg Wissenschaftsverlag, München

# Crystal structure of $(\eta^4$ -cycloocta-1,5-dien)-((+)-1,1'-bis((2*R*,4*R*)-2,4-diethyl-phosphotano)-ferrocene)-rhodium(I) tetrafluoroborate, [Rh(C<sub>8</sub>H<sub>12</sub>)Fe(C<sub>12</sub>H<sub>18</sub>FeP)<sub>2</sub>][BF<sub>4</sub>]

# Zhenya Dai\*, Detlef Heller, Anke Spannenberg and Hans-Joachim Drexler

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Received January 5, 2007, accepted and available on-line June 26, 2007; CCDC no. 1267/1967



### Abstract

C<sub>32</sub>H<sub>48</sub>BF<sub>4</sub>FeP<sub>2</sub>Rh, orthorhombic,  $P2_{1}2_{1}2_{1}$  (no. 19), a = 10.640(2) Å, b = 16.007(3) Å, c = 19.460(4) Å, V = 3314.3 Å<sup>3</sup>, Z = 4,  $R_{gt}(F) = 0.044$ ,  $wR_{ref}(F^{2}) = 0.089$ , T = 200 K.

## Source of material

Standard procedure was performed according to [1]. The ligand was obtained commercially.

## Discussion

Rhodium catalysts with Et-FerroTANE lead to unexpected high enantioselectivities of  $\geq 99$  % in the hydrogenation of  $\beta$ -arylsubstituted  $\beta$ -aminoacrylates [2]. A comparison between the title compound and the related norborna-2,5-diene complex [2] in the catalytic hydrogenation of the diolefines norborna-2,5-diene and (*Z*,*Z*)-cycloocta-1,5-diene motivated us to determine the crystal structure of the title compound. The ratio of the rate constants for the hydrogenation of the diolefine complexes is approximately 97 [3]. It is well known that the double bonds of the diolefines are not coordinated perpendicular to the P–Rh–P plane. The dihedral angle between the planes P–Rh–P and X–Rh–X (X = centroid of the double bond) is in the case of the (*R*,*R*)-COD-complex 15.5° (clockwise twist) and for the (*R*,*R*)-NBD-complex 5.3° (clockwise twist).

Table 1. Data collection and handling.

| Crystal:                                                | red prism fragment, size $0.3 \times 0.3 \times 0.4$ mm |
|---------------------------------------------------------|---------------------------------------------------------|
| Wavelength:                                             | Mo $K_{\alpha}$ radiation (0.71073 Å)                   |
| и:                                                      | $10.75 \text{ cm}^{-1}$                                 |
| Diffractometer, scan mode:                              | Stoe IPDS 1, $\varphi$                                  |
| $2\theta_{\max}$ :                                      | 44°                                                     |
| N(hkl) <sub>measured</sub> , N(hkl) <sub>unique</sub> : | 14132, 4067                                             |
| Criterion for $I_{obs}$ , $N(hkl)_{gt}$ :               | $I_{\rm obs} > 2 \sigma(I_{\rm obs}), 3575$             |
| N(param) <sub>refined</sub> :                           | 370                                                     |
| Programs:                                               | SHELXS-97 [4], SHELXL-97 [5]                            |
|                                                         |                                                         |

**Table 2.** Atomic coordinates and displacement parameters (in  $Å^2$ ).

| Atom   | Site       | x       | У       | z       | $U_{ m iso}$ |
|--------|------------|---------|---------|---------|--------------|
| H(1A)  | 4 <i>a</i> | 0.1613  | -0.4619 | -0.2259 | 0.047        |
| H(2A)  | 4a         | 0.2107  | -0.3798 | -0.1436 | 0.044        |
| H(3A)  | 4a         | 0.1969  | -0.2412 | -0.1446 | 0.048        |
| H(3B)  | 4a         | 0.1368  | -0.2443 | -0.2181 | 0.048        |
| H(4A)  | 4a         | 0.0131  | -0.2300 | -0.0925 | 0.046        |
| H(4B)  | 4a         | -0.0125 | -0.1792 | -0.1597 | 0.046        |
| H(5A)  | 4a         | -0.1807 | -0.2759 | -0.1311 | 0.032        |
| H(6A)  | 4a         | -0.2192 | -0.3370 | -0.2295 | 0.038        |
| H(7A)  | 4a         | -0.0101 | -0.2649 | -0.2837 | 0.055        |
| H(7B)  | 4a         | -0.1052 | -0.3213 | -0.3241 | 0.055        |
| H(8A)  | 4a         | 0.0125  | -0.4372 | -0.3107 | 0.061        |
| H(8B)  | 4a         | 0.1159  | -0.3687 | -0.3210 | 0.061        |
| H(10A) | 4a         | 0.0541  | -0.6686 | 0.0272  | 0.034        |
| H(11A) | 4a         | -0.1086 | -0.7840 | 0.0172  | 0.040        |
| H(12A) | 4a         | -0.2245 | -0.7682 | -0.0966 | 0.039        |
| H(13A) | 4a         | -0.1348 | -0.6402 | -0.1596 | 0.032        |
| H(15A) | 4a         | -0.1317 | -0.4715 | 0.0302  | 0.031        |
| H(16A) | 4a         | -0.1976 | -0.5858 | 0.1164  | 0.037        |
| H(17A) | 4a         | -0.3760 | -0.6698 | 0.0596  | 0.039        |
| H(18A) | 4a         | -0.4235 | -0.6077 | -0.0580 | 0.030        |
| H(19A) | 4a         | 0.2713  | -0.5042 | -0.1241 | 0.028        |
| H(20A) | 4a         | 0.2587  | -0.6011 | -0.0020 | 0.045        |
| H(20B) | 4a         | 0.3282  | -0.5144 | -0.0122 | 0.045        |
| H(21A) | 4a         | 0.0883  | -0.5299 | 0.0353  | 0.028        |
| H(22A) | 4a         | 0.2216  | -0.6773 | -0.1184 | 0.039        |
| H(22B) | 4a         | 0.3565  | -0.6408 | -0.1303 | 0.039        |
| H(23A) | 4a         | 0.2693  | -0.6813 | -0.2347 | 0.073        |
| H(23B) | 4a         | 0.2915  | -0.5845 | -0.2352 | 0.073        |
| H(23C) | 4a         | 0.1560  | -0.6202 | -0.2232 | 0.073        |
| H(24A) | 4a         | 0.1960  | -0.3805 | -0.0172 | 0.046        |
|        |            |         |         |         |              |

<sup>\*</sup> Correspondence author (e-mail: hans-joachim.drexler@catalysis.de)

Table 2. Continued.

Table 2. Continued.

| Atom   | Site       | x       | у       | z       | $U_{ m iso}$ | Atom   | Site       | x       | у       | z       | $U_{ m iso}$ |
|--------|------------|---------|---------|---------|--------------|--------|------------|---------|---------|---------|--------------|
| H(24B) | 4a         | 0.0645  | -0.3823 | 0.0191  | 0.046        | H(29B) | 4 <i>a</i> | -0.2239 | -0.5414 | -0.2579 | 0.048        |
| H(25A) | 4a         | 0.2166  | -0.3387 | 0.0966  | 0.099        | H(30A) | 4a         | -0.3727 | -0.5683 | -0.3445 | 0.120        |
| H(25B) | 4a         | 0.2921  | -0.4217 | 0.0850  | 0.099        | H(30B) | 4a         | -0.4823 | -0.5479 | -0.2933 | 0.120        |
| H(25C) | 4 <i>a</i> | 0.1607  | -0.4242 | 0.1214  | 0.099        | H(30C) | 4a         | -0.3989 | -0.6275 | -0.2820 | 0.120        |
| H(26A) | 4 <i>a</i> | -0.3616 | -0.5784 | -0.1614 | 0.034        | H(31A) | 4a         | -0.4590 | -0.3934 | -0.0248 | 0.048        |
| H(27A) | 4a         | -0.5036 | -0.4443 | -0.1967 | 0.040        | H(31B) | 4a         | -0.3696 | -0.3168 | -0.0366 | 0.048        |
| H(27B) | 4a         | -0.5140 | -0.4904 | -0.1248 | 0.040        | H(32A) | 4a         | -0.5781 | -0.2708 | -0.0316 | 0.079        |
| H(28A) | 4a         | -0.3662 | -0.3484 | -0.1568 | 0.030        | H(32B) | 4a         | -0.6133 | -0.3293 | -0.0932 | 0.079        |
| H(29A) | 4a         | -0.3074 | -0.4617 | -0.2692 | 0.048        | H(32C) | 4a         | -0.5240 | -0.2528 | -0.1050 | 0.079        |
| H(29A) | 4 <i>a</i> | -0.30/4 | -0.4617 | -0.2692 | 0.048        | H(32C) | 4 <i>a</i> | -0.5240 | -0.2528 | -0.1050 |              |

**Table 3.** Atomic coordinates and displacement parameters (in  $Å^2$ ).

| Atom  | Site       | x           | у           | z           | $U_{11}$  | $U_{22}$  | U <sub>33</sub> | $U_{12}$   | $U_{13}$  | U <sub>23</sub> |
|-------|------------|-------------|-------------|-------------|-----------|-----------|-----------------|------------|-----------|-----------------|
| Rh(1) | 4 <i>a</i> | -0.04412(5) | -0.42151(3) | -0.14667(3) | 0.0186(3) | 0.0190(2) | 0.0244(3)       | -0.0011(2) | 0.0014(2) | 0.0057(2)       |
| Fe(1) | 4a         | -0.17739(9) | -0.62581(6) | -0.02189(4) | 0.0229(6) | 0.0198(5) | 0.0206(5)       | -0.0032(4) | 0.0006(4) | 0.0013(4)       |
| P(1)  | 4a         | 0.0609(2)   | -0.5253(1)  | -0.08671(8) | 0.018(1)  | 0.0192(9) | 0.0250(9)       | 0.0000(8)  | 0.0011(8) | 0.0016(7)       |
| P(2)  | 4a         | -0.2451(2)  | -0.4635(1)  | -0.11624(9) | 0.021(1)  | 0.0212(9) | 0.0253(9)       | -0.0007(8) | 0.0008(8) | 0.0037(8)       |
| C(1)  | 4a         | 0.1084(7)   | -0.4119(5)  | -0.2233(4)  | 0.032(4)  | 0.041(5)  | 0.046(5)        | 0.006(4)   | 0.013(4)  | 0.013(4)        |
| C(2)  | 4a         | 0.1405(7)   | -0.3593(4)  | -0.1715(4)  | 0.016(4)  | 0.030(4)  | 0.065(6)        | 0.001(3)   | 0.002(4)  | 0.020(4)        |
| C(3)  | 4a         | 0.1286(7)   | -0.2647(4)  | -0.1714(4)  | 0.036(5)  | 0.028(4)  | 0.057(5)        | -0.011(4)  | -0.009(4) | 0.012(4)        |
| C(4)  | 4a         | 0.0047(6)   | -0.2347(4)  | -0.1419(4)  | 0.035(5)  | 0.024(4)  | 0.055(5)        | -0.004(3)  | -0.005(4) | -0.006(4)       |
| C(5)  | 4a         | -0.1050(6)  | -0.2896(4)  | -0.1575(4)  | 0.022(4)  | 0.021(3)  | 0.039(5)        | 0.001(3)   | 0.000(3)  | 0.002(3)        |
| C(6)  | 4a         | -0.1297(7)  | -0.3279(4)  | -0.2204(4)  | 0.029(5)  | 0.034(4)  | 0.033(5)        | 0.003(4)   | -0.007(3) | 0.010(3)        |
| C(7)  | 4a         | -0.0509(8)  | -0.3191(5)  | -0.2841(4)  | 0.048(5)  | 0.051(5)  | 0.039(5)        | -0.011(5)  | 0.000(4)  | 0.011(4)        |
| C(8)  | 4a         | 0.0503(9)   | -0.3880(5)  | -0.2903(4)  | 0.064(6)  | 0.041(4)  | 0.048(5)        | 0.001(5)   | 0.025(5)  | 0.003(4)        |
| C(9)  | 4a         | -0.0122(6)  | -0.6250(4)  | -0.0721(3)  | 0.023(4)  | 0.019(4)  | 0.027(4)        | 0.006(3)   | -0.003(3) | 0.006(3)        |
| C(10) | 4a         | -0.0034(6)  | -0.6771(4)  | -0.0116(4)  | 0.022(4)  | 0.024(4)  | 0.038(4)        | -0.004(3)  | -0.006(3) | 0.005(3)        |
| C(11) | 4a         | -0.0920(7)  | -0.7409(4)  | -0.0175(4)  | 0.032(4)  | 0.022(4)  | 0.046(5)        | -0.003(3)  | 0.004(4)  | 0.008(4)        |
| C(12) | 4a         | -0.1564(7)  | -0.7322(4)  | -0.0801(4)  | 0.034(5)  | 0.025(4)  | 0.039(5)        | -0.011(4)  | 0.004(4)  | -0.003(3)       |
| C(13) | 4a         | -0.1075(7)  | -0.6612(4)  | -0.1147(4)  | 0.032(4)  | 0.020(4)  | 0.028(4)        | 0.013(3)   | 0.003(3)  | -0.006(3)       |
| C(14) | 4a         | -0.2756(6)  | -0.5196(4)  | -0.0373(3)  | 0.020(4)  | 0.025(4)  | 0.019(4)        | 0.005(3)   | 0.001(3)  | -0.004(3)       |
| C(15) | 4a         | -0.1987(6)  | -0.5126(4)  | 0.0232(3)   | 0.026(4)  | 0.027(4)  | 0.024(4)        | -0.007(3)  | 0.009(3)  | -0.001(3)       |
| C(16) | 4a         | -0.2348(6)  | -0.5754(5)  | 0.0712(3)   | 0.037(4)  | 0.035(4)  | 0.021(4)        | -0.004(4)  | 0.003(3)  | -0.002(3)       |
| C(17) | 4a         | -0.3338(7)  | -0.6211(4)  | 0.0396(3)   | 0.036(5)  | 0.029(4)  | 0.032(4)        | -0.012(4)  | 0.007(3)  | 0.003(3)        |
| C(18) | 4a         | -0.3595(6)  | -0.5875(4)  | -0.0258(3)  | 0.015(4)  | 0.032(4)  | 0.027(4)        | -0.013(3)  | -0.005(3) | 0.002(3)        |
| C(19) | 4a         | 0.2301(6)   | -0.5517(4)  | -0.1017(3)  | 0.018(4)  | 0.019(4)  | 0.033(4)        | -0.004(3)  | 0.001(3)  | 0.004(3)        |
| C(20) | 4a         | 0.2532(7)   | -0.5462(5)  | -0.0229(4)  | 0.032(5)  | 0.038(4)  | 0.042(5)        | 0.004(4)   | -0.010(4) | 0.003(4)        |
| C(21) | 4a         | 0.1316(6)   | -0.4994(4)  | -0.0014(3)  | 0.022(4)  | 0.026(4)  | 0.022(4)        | -0.006(3)  | -0.010(3) | 0.006(3)        |
| C(22) | 4a         | 0.2677(6)   | -0.6309(4)  | -0.1382(4)  | 0.023(4)  | 0.024(4)  | 0.051(5)        | 0.001(3)   | -0.003(4) | -0.006(4)       |
| C(23) | 4a         | 0.2440(9)   | -0.6290(5)  | -0.2148(4)  | 0.062(6)  | 0.037(5)  | 0.048(5)        | 0.013(4)   | 0.002(4)  | -0.014(4)       |
| C(24) | 4a         | 0.1466(8)   | -0.4085(5)  | 0.0178(4)   | 0.047(5)  | 0.033(4)  | 0.034(4)        | -0.011(4)  | -0.005(4) | -0.002(4)       |
| C(25) | 4a         | 0.2097(9)   | -0.3972(6)  | 0.0864(5)   | 0.069(7)  | 0.065(7)  | 0.065(6)        | -0.023(5)  | -0.016(5) | -0.023(5)       |
| C(26) | 4a         | -0.3469(6)  | -0.5211(4)  | -0.1771(3)  | 0.024(4)  | 0.027(4)  | 0.033(4)        | -0.013(3)  | -0.010(3) | 0.004(3)        |
| C(27) | 4a         | -0.4571(7)  | -0.4633(4)  | -0.1568(4)  | 0.024(4)  | 0.040(4)  | 0.037(4)        | 0.009(4)   | -0.002(4) | 0.009(3)        |
| C(28) | 4a         | -0.3837(6)  | -0.3917(4)  | -0.1225(3)  | 0.010(4)  | 0.027(4)  | 0.038(4)        | 0.004(3)   | 0.002(3)  | 0.008(3)        |
| C(29) | 4a         | -0.3082(8)  | -0.5191(5)  | -0.2531(3)  | 0.061(6)  | 0.034(5)  | 0.025(4)        | -0.018(4)  | -0.013(4) | 0.001(3)        |
| C(30) | 4a         | -0.399(1)   | -0.5705(7)  | -0.2974(5)  | 0.104(8)  | 0.076(7)  | 0.060(6)        | -0.026(7)  | -0.014(6) | 0.008(6)        |
| C(31) | 4a         | -0.4350(7)  | -0.3505(5)  | -0.0575(4)  | 0.033(5)  | 0.044(5)  | 0.044(5)        | 0.005(4)   | 0.008(4)  | -0.002(4)       |
| C(32) | 4a         | -0.5480(8)  | -0.2958(5)  | -0.0733(4)  | 0.038(5)  | 0.054(5)  | 0.067(6)        | 0.014(5)   | -0.005(5) | -0.016(4)       |
| B(1)  | 4a         | -0.457(1)   | -0.8050(5)  | -0.1877(4)  | 0.033(6)  | 0.044(5)  | 0.033(5)        | 0.005(5)   | 0.007(5)  | -0.003(4)       |
| F(1)  | 4 <i>a</i> | -0.4494(5)  | -0.7355(3)  | -0.1466(3)  | 0.064(3)  | 0.052(3)  | 0.083(3)        | 0.002(3)   | -0.024(4) | -0.026(3)       |
| F(2)  | 4a         | -0.4050(6)  | -0.8724(3)  | -0.1535(3)  | 0.106(5)  | 0.058(3)  | 0.086(4)        | 0.028(3)   | -0.008(4) | 0.009(3)        |
| F(3)  | 4a         | -0.5801(5)  | -0.8210(4)  | -0.2027(3)  | 0.056(4)  | 0.084(4)  | 0.082(4)        | -0.012(3)  | -0.014(3) | -0.017(3)       |
| F(4)  | 4a         | -0.3918(7)  | -0.7933(4)  | -0.2472(3)  | 0.126(6)  | 0.106(5)  | 0.081(4)        | -0.001(4)  | 0.053(4)  | 0.015(4)        |
| -(1)  | 14         | 0.0010(7)   | 5.7555(4)   | 5.2172(5)   | 0.120(0)  | 5.100(5)  | 5.001(1)        | 0.001(1)   | 0.000(1)  | 0.012(1)        |

Acknowledgment. We thank Cornelia Pribbenow for complex preparation.

## References

- Schrock, R. R.; Osborn, J. A.: Preparation and Properties of Some Cationic Complexes of Rhodium(I) and Rhodium(III). J. Am. Chem. Soc. 93 (1971) 2397-2407.
- Drexler, H.-J.; Baumann, W.; Spannenberg, A.; Heller, D.: unpublished results.
   Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal
- You, J.; Dexler, H.-J.; Zhang, S.; Fischer, C.; Heller, D.: Preparation and Asymmetric Hydrogenation of β-Aryl-Substituted β-Acylaminoacrylates. Angew. Chem., Int. Ed. 42 (2003) 913-916.
- Structures. University of Göttingen, Germany 1997.
   Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.