1,314 research outputs found

    Molecular Motor Constructed from a Double-Walled Carbon Nanotube Driven by Axially Varying Voltage

    Full text link
    A new molecular motor is conceptually constructed from a double-walled carbon nanotube (DWNT) consisting of a long inner single-walled carbon nanotube (SWNT) and a short outer SWNT with different chirality. The interaction between inner and outer tubes is the sum of the Lennard-Jones potentials between carbon atoms in inner tube and those in outer one. Within the framework of Smoluchowski-Feynman ratchet, it is theoretically shown that this system in an isothermal bath will exhibit a unidirectional rotation in the presence of a varying axial electrical voltage.Comment: 11 pages + 3 figure

    A LANDSAT study of ephemeral and perennial rangeland vegetation and soils

    Get PDF
    The author has identified the following significant results. Several methods of computer processing were applied to LANDSAT data for mapping vegetation characteristics of perennial rangeland in Montana and ephemeral rangeland in Arizona. The choice of optimal processing technique was dependent on prescribed mapping and site condition. Single channel level slicing and ratioing of channels were used for simple enhancement. Predictive models for mapping percent vegetation cover based on data from field spectra and LANDSAT data were generated by multiple linear regression of six unique LANDSAT spectral ratios. Ratio gating logic and maximum likelihood classification were applied successfully to recognize plant communities in Montana. Maximum likelihood classification did little to improve recognition of terrain features when compared to a single channel density slice in sparsely vegetated Arizona. LANDSAT was found to be more sensitive to differences between plant communities based on percentages of vigorous vegetation than to actual physical or spectral differences among plant species

    Multi-Exciton Spectroscopy of a Single Self Assembled Quantum Dot

    Get PDF
    We apply low temperature confocal optical microscopy to spatially resolve, and spectroscopically study a single self assembled quantum dot. By comparing the emission spectra obtained at various excitation levels to a theoretical many body model, we show that: Single exciton radiative recombination is very weak. Sharp spectral lines are due to optical transitions between confined multiexcitonic states among which excitons thermalize within their lifetime. Once these few states are fully occupied, broad bands appear due to transitions between states which contain continuum electrons.Comment: 12 pages, 4 figures, submitted for publication on Jan,28 199

    Fragmentation pathways of nanofractal structures on surface

    Full text link
    We present a detailed systematical theoretical analysis of the post-growth processes occurring in nanofractals grown on surface. For this study we developed a method which accounts for the internal dynamics of particles in a fractal. We demonstrate that particle diffusion and detachment controls the shape of the emerging stable islands on surface. We consider different scenarios of fractal post-growth relaxation and analyze the time evolution of the island's morphology. The results of our calculations are compared with available experimental observations, and experiments in which the post-growth relaxation of deposited nanostructures can be probed are suggested.Comment: 34 pages, 11 figure

    Far-infrared absorption in parallel quantum wires with weak tunneling

    Full text link
    We study collective and single-particle intersubband excitations in a system of quantum wires coupled via weak tunneling. For an isolated wire with parabolic confinement, the Kohn's theorem guarantees that the absorption spectrum represents a single sharp peak centered at the frequency given by the bare confining potential. We show that the effect of weak tunneling between two parabolic quantum wires is twofold: (i) additional peaks corresponding to single-particle excitations appear in the absorption spectrum, and (ii) the main absorption peak acquires a depolarization shift. We also show that the interplay between tunneling and weak perpendicular magnetic field drastically enhances the dispersion of single-particle excitations. The latter leads to a strong damping of the intersubband plasmon for magnetic fields exceeding a critical value.Comment: 18 pages + 6 postcript figure

    Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection

    Get PDF
    Purpose: To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. Methods: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL) thickness measurements. Results: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. Conclusions: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage. © 2013 Xu et al

    Polarization-sensitive quantum-optical coherence tomography

    Full text link
    We set forth a polarization-sensitive quantum-optical coherence tomography (PS-QOCT) technique that provides axial optical sectioning with polarization-sensitive capabilities. The technique provides a means for determining information about the optical path length between isotropic reflecting surfaces, the relative magnitude of the reflectance from each interface, the birefringence of the interstitial material, and the orientation of the optical axis of the sample. PS-QOCT is immune to sample dispersion and therefore permits measurements to be made at depths greater than those accessible via ordinary optical coherence tomography. We also provide a general Jones matrix theory for analyzing PS-QOCT systems and outline an experimental procedure for carrying out such measurements.Comment: 15 pages, 5 figures, to appear in Physical Review

    Theoretical interpretation of the experimental electronic structure of lens shaped, self-assembled InAs/GaAs quantum dots

    Full text link
    We adopt an atomistic pseudopotential description of the electronic structure of self-assembled, lens shaped InAs quantum dots within the ``linear combination of bulk bands'' method. We present a detailed comparison with experiment, including quantites such as the single particle electron and hole energy level spacings, the excitonic band gap, the electron-electron, hole-hole and electron hole Coulomb energies and the optical polarization anisotropy. We find a generally good agreement, which is improved even further for a dot composition where some Ga has diffused into the dots.Comment: 16 pages, 5 figures. Submitted to Physical Review

    Optical excitations of a self assembled artificial ion

    Full text link
    By use of magneto-photoluminescence spectroscopy we demonstrate bias controlled single-electron charging of a single quantum dot. Neutral, single, and double charged excitons are identified in the optical spectra. At high magnetic fields one Zeeman component of the single charged exciton is found to be quenched, which is attributed to the competing effects of tunneling and spin-flip processes. Our experimental data are in good agreement with theoretical model calculations for situations where the spatial extent of the hole wave functions is smaller as compared to the electron wave functions.Comment: to be published in Physical Review B (rapid communication
    • …
    corecore