7 research outputs found

    Basal conditions beneath enhanced-flow tributaries of Slessor Glacier, East Antarctica

    No full text
    Radio-echo sounding data are used to investigate bed roughness beneath the three enhanced-flow tributaries of Slessor Glacier, East Antarctica. Slow-moving inter-tributary areas are found to have rough beds, while the bed of the northernmost tributary is relatively smooth. A reconstruction of potential subglacial drainage routing indicates that water would be routed down this tributary, and investigations of basal topography following isostatic recovery reveal that the bed would have been below sea level in preglacial times, so marine sediments may have accumulated here. Together, these factors are further support for the dominance of basal motion in this tributary, reported elsewhere. Conversely, although the other two Slessor tributaries may have water routed beneath them, they would not have been below sea level before the growth of the ice sheet, so cannot be underlain by marine sediments. They are also found to be rough, and, within the range of uncertainties, it is likely that basal motion does not play a major role in the flow of these tributaries. Perhaps the most interesting area, however, is a deep trough where flow rates are currently low but the bed is as smooth as the northern Slessor trough. It is proposed that, although ice deformation currently dominates in this trough, basal motion may have occurred in the past, when the ice was thicker

    Pines

    Get PDF
    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia. Their natural range reaches the equator only in Southeast Asia. In Africa, natural occurrences are confined to the Mediterranean basin. Pines grow at various elevations from sea level (not usual in tropical areas) to highlands. Two main regions of diversity are recorded, the most important one in Central America (43 species found in Mexico) and a secondary one in China. Some species have a very wide natural range (e.g., P. ponderosa, P. sylvestris). Pines are adapted to a wide range of ecological conditions: from tropical (e.g., P. merkusii, P. kesiya, P. tropicalis), temperate (e.g., P. pungens, P. thunbergii), and subalpine (e.g., P. albicaulis, P. cembra) to boreal (e.g., P. pumila) climates (Richardson and Rundel 1998, Burdon 2002). They can grow in quite pure stands or in mixed forest with other conifers or broadleaved trees. Some species are especially adapted to forest fires, e.g., P. banksiana, in which fire is virtually essential for cone opening and seed dispersal. They can grow in arid conditions, on alluvial plain soils, on sandy soils, on rocky soils, or on marsh soils. Trees of some species can have a very long life as in P. longaeva (more than 3,000 years)

    The role of Antarctic sea ice in global climate change

    No full text
    Taking a distinct interdisciplinary focus, a critical view is presented of the current state of research concerning Antarctic sea-ice/atmosphere/ocean interaction and its effect on climate on the interannual timescale, with particular regard to anthropogenic global warming. Sea-ice formation, morphology, thickness, extent, seasonality and distribution are introduced as vital factors in climatic feedbacks. Sea-ice / atmosphere interaction is next discussed, emphasizing its meteorological and topographical influences and the effects of and on polar cyclonic activity. This leads on to the central theme of sea ice in global climate change, which contains critiques of sea-ice climatic feedbacks, current findings on the representation of these feedbacks in global climatic models, and to what extent they are corroborated by observational evidence. Sea-ice/ocean interaction is particularly important. This is discussed with special reference to polynyas and leads, and the use of suitably coupled sea-ice/ocean models. A brief review of several possible climatic forcing factors is presented, which most highly rates a postulated ENSO-Antarctic sea-ice link. Sea-ice/atmosphere/ocean models need to be validated by adequate observations, both from satellites and ground based. In particular, models developed in the Arctic, where the observational network allows more reasonable validation, can be applied to the Antarctic in suitably modified form so as to account for unique features of the Antarctic cryosphere. Benefits in climatic modelling will be gained by treating Antarctic sea ice as a fully coupled component of global climate

    Glacial geomorphology: towards a convergence of glaciology and geomorphology

    No full text
    This review presents a perspective on recent trends in glacial geomorphological research, which has seen an increasing engagement with investigating glaciation over larger and longer timescales facilitated by advances in remote sensing and numerical modelling. Remote sensing has enabled the visualization of deglaciated landscapes and glacial landform assemblages across continental scales, from which hypotheses of millennial-scale glacial landscape evolution and associations of landforms with palaeo-ice streams have been developed. To test these ideas rigorously, the related goal of imaging comparable subglacial landscapes and landforms beneath contemporary ice masses is being addressed through the application of radar and seismic technologies. Focusing on the West Antarctic Ice Sheet, we review progress to date in achieving this goal, and the use of radar and seismic imaging to assess: (1) subglacial bed morphology and roughness; (2) subglacial bed reflectivity; and (3) subglacial sediment properties. Numerical modelling, now the primary modus operandi of 'glaciologists' investigating the dynamics of modern ice sheets, offers significant potential for testing 'glacial geomorphological' hypotheses of continental glacial landscape evolution and smaller-scale landform development, and some recent examples of such an approach are presented. We close by identifying some future challenges in glacial geomorphology, which include: (1) embracing numerical modelling as a framework for testing hypotheses of glacial landform and landscape development; (2) identifying analogues beneath modern ice sheets for landscapes and landforms observed across deglaciated terrains; (3) repeat-surveying dynamic subglacial landforms to assess scales of formation and evolution; and (4) applying glacial geomorphological expertise more fully to extraterrestrial cryospheres
    corecore