3,237 research outputs found
Energy Gaps in Graphene Nanoribbons
Based on a first-principles approach, we present scaling rules for the band
gaps of graphene nanoribbons (GNRs) as a function of their widths. The GNRs
considered have either armchair or zigzag shaped edges on both sides with
hydrogen passivation. Both varieties of ribbons are shown to have band gaps.
This differs from the results of simple tight-binding calculations or solutions
of the Dirac's equation based on them. Our {\it ab initio} calculations show
that the origin of energy gaps for GNRs with armchair shaped edges arises from
both quantum confinement and the crucial effect of the edges. For GNRs with
zigzag shaped edges, gaps appear because of a staggered sublattice potential on
the hexagonal lattice due to edge magnetization. The rich gap structure for
ribbons with armchair shaped edges is further obtained analytically including
edge effects. These results reproduce our {\it ab initio} calculation results
very well
Comparison of Power Dependence of Microwave Surface Resistance of Unpatterned and Patterned YBCO Thin Film
The effect of the patterning process on the nonlinearity of the microwave
surface resistance of YBCO thin films is investigated. With the use of a
sapphire dielectric resonator and a stripline resonator, the microwave of
YBCO thin films was measured before and after the patterning process, as a
function of temperature and the rf peak magnetic field in the film. The
microwave loss was also modeled, assuming a dependence of
on current density . Experimental and modeled results
show that the patterning has no observable effect on the microwave residual
or on the power dependence of .Comment: Submitted to IEEE Trans. MT
Geometrical and electronic structures of the (5, 3) single-walled gold nanotube from first-principles calculations
The geometrical and electronic structures of the 4 {\AA} diameter perfect and
deformed (5, 3) single-walled gold nanotube (SWGT) have been studied based upon
the density-functional theory in the local-density approximation (LDA). The
calculated relaxed geometries show clearly significant deviations from those of
the ideally rolled triangular gold sheet. It is found that the different
strains have different effects on the electronic structures and density of
states of the SWGTs. And the small shear strain can reduce the binding energy
per gold atom of the deformed SWGT, which is consistent with the experimentally
observed result. Finally, we found the finite SWGT can show the
metal-semiconductor transition.Comment: 11 pages, 4 figure
Large oscillating non-local voltage in multi-terminal single wall carbon nanotube devices
We report on the observation of a non-local voltage in a ballistic
one-dimensional conductor, realized by a single-wall carbon nanotube with four
contacts. The contacts divide the tube into three quantum dots which we control
by the back-gate voltage . We measure a large \emph{oscillating} non-local
voltage as a function of with zero mean. Though a classical
resistor model can account for a non-local voltage including change of sign, it
fails to describe the magnitude properly. The large amplitude of is
due to quantum interference effects and can be understood within the
scattering-approach of electron transport
Group theory for structural analysis and lattice vibrations in phosphorene systems
Group theory analysis for two-dimensional elemental systems related to
phosphorene is presented, including (i) graphene, silicene, germanene and
stanene, (ii) dependence on the number of layers and (iii) two stacking
arrangements. Departing from the most symmetric graphene space
group, the structures are found to have a group-subgroup relation, and analysis
of the irreducible representations of their lattice vibrations makes it
possible to distinguish between the different allotropes. The analysis can be
used to study the effect of strain, to understand structural phase transitions,
to characterize the number of layers, crystallographic orientation and
nonlinear phenomena.Comment: 24 pages, 3 figure
Electron-Electron Interactions on the Edge States of Graphene: A Many Body Configuration Interaction Study
We have studied zigzag and armchair graphene nano ribbons (GNRs), described
by the Hubbard Hamiltonian using quantum many body configuration interaction
methods. Due to finite termination, we find that the bipartite nature of the
graphene lattice gets destroyed at the edges making the ground state of the
zigzag GNRs a high spin state, whereas the ground state of the armchair GNRs
remains a singlet. Our calculations of charge and spin densities suggest that,
although the electron density prefers to accumulate on the edges, instead of
spin polarization, the up and down spins prefer to mix throughout the GNR
lattice. While the many body charge gap results in insulating behavior for both
kinds of GNRs, the conduction upon application of electric field is still
possible through the edge channels because of their high electron density.
Analysis of optical states suggest differences in quantum efficiency of
luminescence for zigzag and armchair GNRs, which can be probed by simple
experiments.Comment: 5 pages, 4 figure
Electronic structure of silicon-based nanostructures
We have developed an unifying tight-binding Hamiltonian that can account for
the electronic properties of recently proposed Si-based nanostructures, namely,
Si graphene-like sheets and Si nanotubes. We considered the and
models up to first- and second-nearest neighbors, respectively. Our
results show that the Si graphene-like sheets considered here are metals or
zero-gap semiconductors, and that the corresponding Si nanotubes follow the
so-called Hamada's rule [Phys. Rev. Lett. {\bf 68}, 1579 1992]. Comparison to a
recent {\it ab initio} calculation is made.Comment: 12 pages, 6 Figure
Indications of superconductivity in doped highly oriented pyrolytic graphite
We have observed possible superconductivity using standard resistance vs.
temperature techniques in phosphorous ion implanted Highly Oriented Pyrolytic
Graphite. The onset appears to be above 100 K and quenching by an applied
magnetic field has been observed. The four initial boron implanted samples
showed no signs of becoming superconductive whereas all four initial and eight
subsequent samples that were implanted with phosphorous showed at least some
sign of the existence of small amounts of the possibly superconducting phases.
The observed onset temperature is dependent on both the number of electron
donors present and the amount of damage done to the graphene sub-layers in the
Highly Oriented Pyrolytic Graphite samples. As a result the data appears to
suggest that the potential for far higher onset temperatures in un-damaged
doped graphite exists.Comment: 7 pages, 1 table, 5 figures, 11 references, Acknowledgments section
was correcte
Are better conducting molecules more rigid?
We investigate the electronic origin of the bending stiffness of conducting
molecules. It is found that the bending stiffness associated with electronic
motion, which we refer to as electro-stiffness, , is governed by
the molecular orbital overlap and the gap width between HOMO and LUMO
levels, and behaves as . To study the
effect of doping, we analyze the electron filling-fraction dependence on
and show that doped molecules are more flexible. In addition, to
estimate the contribution of to the total stiffness, we consider
molecules under a voltage bias, and study the length contraction ratio as a
function of the voltage. The molecules are shown to be contracted or dilated,
with increasing nonlinearly with the applied bias
- …
