6 research outputs found
An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We report on a non-precious, two-phase bifunctional oxygen reduction and evolution (ORR and OER) electrocatalyst with previously unachieved combined roundtrip catalytic reactivity and stability for use in oxygen electrodes of unitized reversible fuel cell/electrolyzers or rechargeable metal-air batteries. The combined OER and ORR overpotential, total, at 10 mA cm(-2) was a record low value of 0.747 V. Rotating Ring Disk Electrode (RRDE) measurements revealed a high faradaic selectivity for the 4 electron pathways, while subsequent continuous MEA tests in reversible electrolyzer cells confirmed the excellent catalyst reactivity rivaling the state-of-the-art combination of iridium (OER) and platinum (ORR).BMBF, 03SF0433A, Effiziente edelmetallfreie Katalysatorsysteme basierend auf Mangan und Eisen fĂŒr flexible MeerwasserelektrolyseureBMBF, 03SF0527A, LoPlaKa
Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds
Direct seawater electrolysis faces fundamental catalytic and process engineering challenges. Here we demonstrate a promising seawater electrolyser configuration using asymmetric electrolyte feeds. We further investigated the faradaic O2 efficiency of NiFe-LDH in alkalinized Clâ-containing electrolytes in comparison to commercial IrOx-based catalysts. Other than IrOx, NiFe-LDH prevents the oxidation of Clâ and appears highly selective for the oxygen evolution reaction in alkalinized seawater even at cell potentials beyond 3.0 Vcell.TU Berlin, Open-Access-Mittel - 2020BMWI, 03EIV041F, Verbundvorhaben: MethQuest - MethFuel - Innovative Methanerzeugung auf Basis Erneuerbarer Quellen; Teilvorhaben: MeerwasserelektrolyseDFG, 424873219, Einfluss der Katalysator-TrĂ€ger-Wechselwirkung auf die AktivitĂ€t und StabilitĂ€t von Wasserspaltungs-Katalysatore
Electrolysis of low-grade and saline surface water
Review Article
Published: 17 February 2020
Electrolysis of low-grade and saline surface water
Wenming Tong, Mark Forster, Fabio Dionigi, Sören Dresp, Roghayeh Sadeghi Erami, Peter Strasser, Alexander J. Cowan & Pau Farrà s
Nature Energy (2020)Cite this article
1779 Accesses
1 Citations
60 Altmetric
Metricsdetails
Abstract
Powered by renewable energy sources such as solar, marine, geothermal and wind, generation of storable hydrogen fuel through water electrolysis provides a promising path towards energy sustainability. However, state-of-the-art electrolysis requires support from associated processes such as desalination of water sources, further purification of desalinated water, and transportation of water, which often contribute financial and energy costs. One strategy to avoid these operations is to develop electrolysers that are capable of operating with impure water feeds directly. Here we review recent developments in electrode materials/catalysts for water electrolysis using low-grade and saline water, a significantly more abundant resource worldwide compared to potable water. We address the associated challenges in design of electrolysers, and discuss future potential approaches that may yield highly active and selective materials for water electrolysis in the presence of common impurities such as metal ions, chloride and bio-organisms.W.T., M.F., R.S.E., A.J.C. and P.F. acknowledge financial support from INTERREG Atlantic Area programme (Grant reference EAPA_190_2016). P.F. acknowledges support from Royal Society Alumni programme. F.D., S.D. and P.S. gratefully acknowledge financial support by the German Research Foundation (DFG) through Grant reference number STR 596/8-1 and the federal ministry for economic affairs and energy (Bundesministerium fĂŒr Wirtschaft und Energie, BMWi) under grant number 03EIV041F. P.S. acknowledges partial funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under GermanyÂŽs Excellence Strategy â EXC 2008/1 â 390540038 (zum Teil gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes und der LĂ€nder â EXC 2008/1 â 390540038).peer-reviewed2020-08-1
Edelmetallfreie bifunktionelle Katalysatoren fĂŒr reversible Meerwasser-Elektrolyseure
Regenerative hydrogen, which is produced by renewable electricity used in water electrolyzers, is considered as ideal energy carrier of the future. The selective splitting of seawater into oxygen and hydrogen seem to be a promising alternative compared to established water electrolysis technologies, which typically use highly purified water and electrolytes only. In addition, the back transformation of the produced hydrogen from seawater could generate in fuel cells not only electricity but also fresh water. From a thermodynamic perspective and using a seawater electrolyzer, just the anodic chlorine evolution (CER) competes with the desired oxygen evolution reaction (OER).
The overall goal of this work was the identification and analysis of a catalyst system suitable not only for the selectively oxidation of seawater into oxygen, but also suitable for the oxygen reduction reaction (ORR) in fuel cells. The main focus was set to precious metal free materials, which enables the fact that selective seawater splitting is favored in alkaline media. To reaching the goal various metal oxides based on Co, Mn, Fe and Ni were synthesized, tested in 0.1 M KOH and categorized with regard to their OER and ORR activity associated with their crystal structure. In comparison, every synthesized oxide showed no sufficient ORR activity, which indicates a favored OER activity of oxides. Consequently, a two-component catalyst system was designed to fulfill the requirement of a bifunctional catalyst. While one component consists of the most active OER catalyst (NiFe-LDH), the other component consists of a known precious metal-free ORR catalyst (Fe-N-C). This physical catalyst mixture in a ratio of 1:3 showed to this date unachieved bifunctional activity in 0.1 M KOH. Additional reversible electrolyzer tests using an anion exchange membrane (AEM, Tokuyama A201) confirmed this extraordinary bifunctional activity and opened a design concept for future bifunctional catalyst systems. Just Fe-N-C indicated limitations at elevated potentials and also the AEM appears not reversible.
Testing NiFe-LDH as anode catalyst in a seawater electrolyzer verified its suitability, showing high selectivities and activities. Constantly decreasing electrolyzer performance indicated rather the AEM as bottleneck for seawater electrolyzers than a catalyst induced, which was demonstrated by a strong recovery effect. Supporting this, quasi in-situ X-ray absorption spectroscopy (XAS) showed no influence of Cl- on the local structure of NiFe-LDH, which verified the suitability of NiFe-LDH as catalyst for seawater electrolyzer anodes.Regenerativer Wasserstoff, welcher mit erneuerbarem Strom ĂŒber Wasserelektrolyseure hergestellt wird, gilt als ein idealer, da umweltfreundlicher, EnergietrĂ€ger der Zukunft. WĂ€hrend ĂŒbliche Elektrolyseure nur hochreines Wasser oder Elektrolyte nutzen können, stellt die selektive Spaltung von Meerwasser in Sauerstoff und Wasserstoff eine vielversprechende Alternative dar. Reversibel eingesetzt könnte ein Meerwasserelektrolyseur bei der RĂŒckverstromung des hergestellten Wasserstoffs neben erneuerbarer ElektrizitĂ€t auch Trinkwasser gewinnen. Thermodynamisch betrachtet stehen in der Meerwasserelektrolyse lediglich die anodische Chlorevolutionsreaktion (CER) und die gewĂŒnschte Sauerstoffevolutionsreaktion (OER) in direkter Konkurrenz zueinander.
Ziel dieser Arbeit war die Identifikation und Analyse eines Katalysatorsystems, welches nicht nur selektiv Meerwasser in Sauerstoff oxidieren, sondern ebenfalls reversibel in einer Brennstoffzelle fĂŒr die Sauerstoffreduktionsreaktion (ORR) genutzt werden kann. Der Fokus lag dabei auf edelmetallfreien Materialien, welches durch die Tatsache der begĂŒnstigten Meerwasserspaltung bei hohem pH-Wert ermöglicht wird. Dazu wurden verschiedene Oxide basierend auf Co, Mn, Fe und Ni hergestellt und in Hinsicht auf ihre elektrochemischen OER und ORR AktivitĂ€t in Verbindung mit dessen Kristallstruktur und Komposition getestet und kategorisiert. Im Vergleich zeigten jedoch alle hergestellten Materialien keine hinreichenden ORR AktivitĂ€ten, was auf eine favorisierte OER AktivitĂ€t von Oxiden schlieĂen lĂ€sst. So wurde bei der Entwicklung eines bifunktionalen Katalysatorsystem das Konzept eines Zweikomponenten Systems angewendet und der beste OER Katalysator (NiFe-LDH) mit einem bekannten ORR Katalysator (Fe-N-C) kombiniert. So zeigte die Mischung von (1:3) in 0.1 M KOH bis zu diesem Zeitpunkt unerreicht hohe bifunktionelle OER/ORR AktivitĂ€ten. Auch in reversiblen Elektrolysezelltests konnte unter der Verwendung einer Anionen Austauschmembran (AEM, Tokuyama A201) diese AktivitĂ€t bestĂ€tigt werden und eröffnete dadurch ein Designkonzept fĂŒr spĂ€tere bifunktionelle Katalysatorsysteme. Lediglich das Fe-N-C zeigte EinschrĂ€nkungen bei hohen Elektrolysezellpotentialen und die AEM deutete darauf hin nicht stabil gegenĂŒber einer reversiblen Fahrweise zu sein.
NiFe-LDH als anodisches Katalysatormaterial in einem Meerwasserelektrolyseur bestĂ€tigte aber dessen Eignung und zeigte hohe SelektivitĂ€ten wie auch AktivitĂ€ten in einem Meerwasserelektrolyseur. Bei weiteren Untersuchungen wurde ein starker Einfluss des NaCl auf die Membran konstatiert. Auch stetig sinkende Elektrolyseurleistung deuteten eher auf einen Membraneffekt hin, da katalytische Tests und quasi in-situ Röntgenabsorptionsspektroskopie (XAS) NiFe-LDH als geeignetes Material fĂŒr zukĂŒnftige Meerwasserelektrolyseures bestĂ€tigten