1,956 research outputs found

    Eccentricity fluctuations from the Color Glass Condensate at RHIC and LHC

    Full text link
    In this brief note, we determine the fluctuations of the initial eccentricity in heavy-ion collisions caused by fluctuations of the nucleon configurations. This is done via a Monte-Carlo implementation of a Color Glass Condensate ktk_t-factorization approach. The eccentricity fluctuations are found to nearly saturate elliptic flow fluctuations measured recently at RHIC. Extrapolations to LHC energies are shown.Comment: 2 pages, 2 figure

    Effects of nucleus initialization on event-by-event observables

    Get PDF
    In this work we present a study of the influence of nucleus initializations on the event-by-event elliptic flow coefficient, v2v_2. In most Monte-Carlo models, the initial positions of the nucleons in a nucleus are completely uncorrelated, which can lead to very high density regions. In a simple, yet more realistic model where overlapping of the nucleons is avoided, fluctuations in the initial conditions are reduced. However, v2v_2 distributions are not very sensitive to the initialization choice.Comment: 4 pages, 5 figures, to appear in the Bras. Jour. Phy

    CANCEROLOGÍA: Tratamiento del cáncer genital femenino incurable con testtosterona

    Get PDF

    Semihard Interactions in Nuclear Collisions Based on a Unified Approach to High Energy Scattering

    Get PDF
    Our ultimate goal is the construction of a model for interactions of two nuclei in the energy range between several tens of GeV up to several TeV per nucleon in the centre-of-mass system. Such nuclear collisions are very complex, being composed of many components, and therefore some strategy is needed to construct a reliable model. The central point of our approach is the hypothesis, that the behavior of high energy interactions is universal (universality hypothesis). So, for example, the hadronization of partons in nuclear interactions follows the same rules as the one in electron-positron annihilation; the radiation of off-shell partons in nuclear collisions is based on the same principles as the one in deep inelastic scattering. We construct a model for nuclear interactions in a modular fashion. The individual modules, based on the universality hypothesis, are identified as building blocks for more elementary interactions (like e^+ e^-, lepton-proton), and can therefore be studied in a much simpler context. With these building blocks under control, we can provide a quite reliable model for nucleus-nucleus scattering, providing in particular very useful tests for the complicated numerical procedures using Monte Carlo techniques.Comment: 10 pages, no figures; Proc. of the ``Workshop on Nuclear Matter in Different Phases and Transitions'', Les Houches, France, March 31 - April 10, 199

    Models for RHIC and LHC: New Developments

    Get PDF
    We outline inconsistencies in presently used models for high energy nuclear scattering, which make their application quite unreliable. Many "successes" are essentially based on an artificial freedom of parameters, which does not exist when the models are constructed properly. The problem is the fact that any multiple scattering theory requires an appropriate treatment of the energy sharing between the individual interactions, which is technically very difficult to implement. Lacking a satisfying solution to this problem, it has been simply ignored. We introduce a fully self-consistent formulation of the multiple-scattering scheme. Inclusion of soft and hard components - very crucial at high energies - appears in a "natural way", providing a smooth transition from soft to hard physics. We can show that the effect of appropriately considering energy conservation has a big influence on the results, and MUST therefore be included in any serious calculation.Comment: talk given at the ``15thInternational Conference on Ultrarelativistic Nucleus-Nucleus Collisions'', Quark Matter 2001, Stony Brook, USA, January 15-20, 200

    The Nexus Model

    Get PDF
    The interpretation of experimental results at RHIC and in the future also at LHC requires very reliable and realistic models. Considerable effort has been devoted to the development of such models during the past decade, many of them being heavily used in order to analyze data. There are, however, serious inconsistencies in the above-mentioned approaches. In this paper, we will introduce a fully self-consistent formulation of the multiple-scattering scheme in the framework of a Gribov-Regge type effective theory.Comment: Invited talk given at the International Workshop on the Physics of the Quark Gluon Plasma, Palaiseau, France, September 4-7, 200

    Initial Condition for QGP Evolution from NEXUS

    Full text link
    We recently proposed a new approach to high energy nuclear scattering, which treats the initial stage of heavy ion collisions in a sophisticated way. We are able to calculate macroscopic quantities like energy density and velocity flow at the end of this initial stage, after the two nuclei having penetrated each other. In other words, we provide the initial conditions for a macroscopic treatment of the second stage of the collision. We address in particular the question of how to incorporate the soft component properly. We find almost perfect "Bjorken scaling": the rapidity coincides with the space-time rapidity, whereas the transverse flow is practically zero. The distribution of the energy density in the transverse plane shows typically a very "bumpy" structure.Comment: 17 pages, 24 figure
    • …
    corecore