310 research outputs found

    Analisi dell’anisotropia microstrutturale in materiali compositi rinforzati con fibre corte

    Get PDF
    Synchrotron light microtomography has proved to be particularly efficient in order to analyze the microstructural characteristics in terms of reinforce fibre distribution and orientation in glass fibre reinforced composites. The spatial distribution of fibre within the polymeric matrix could be detected even in case of fibre characterized by a small diameter (10 micrometers average diameter). Differences in orientation distribution within a sample could be measured using the Mean Intercept Length (MIL) and the fabric tensor. The results presented herein refer to a sample of a 30% by weight glass fibre reinforced polyamide 6, extracted form a thin plate

    A multi-layer edge-on single photon counting silicon microstrip detector for innovative techniques in diagnostic radiology

    Get PDF
    A three-layer detector prototype, obtained by stacking three edge-on single photon counting silicon microstrip detectors, has been developed and widely tested. This was done in the framework of the Synchrotron Radiation for Medical Physics/Frontier Radiology (SYRMEP/FRONTRAD) collaboration activities, whose aim is to improve the quality of mammographic examinations operating both on the source and on the detector side. The active surface of the device has been fully characterized making use of an edge-scanning technique and of a well-collimated laminar synchrotron radiation beam. The obtained data (interlayer distances, channel correspondence, etc.) have then been used to combine information coming from each detector layer, without causing any loss in spatial and contrast resolution of the device. Contrast and spatial resolution have also been separately evaluated for each detector layer. Moreover, imaging techniques (phase contrast, refraction, and scatter imaging), resulting in an increased visibility of low absorbing details, have been implemented, and their effectiveness has been tested on a biological sample. Finally, the possibility of simultaneously acquiring different kind of images with the different detector layers is discussed. This would result in maximizing the information extracted from the sample, while at the same time the high absorption efficiency of the detector device would allow a low dose delivery

    Analisi dell’anisotropia microstrutturale in materiali compositi rinforzati con fibre corte

    Get PDF
    Synchrotron light microtomography has proved to be particularly efficient in order to analyze the microstructural characteristics in terms of reinforce fibre distribution and orientation in glass fibre reinforced composites. The spatial distribution of fibre within the polymeric matrix could be detected even in case of fibre characterized by a small diameter (10 micrometers average diameter). Differences in orientation distribution within a sample could be measured using the Mean Intercept Length (MIL) and the fabric tensor. The results presented herein refer to a sample of a 30% by weight glass fibre reinforced polyamide 6, extracted form a thin plate

    analisi dell anisotropia microstrutturale in materiali compositi rinforzati con fibre corte

    Get PDF
    Synchrotron light microtomography has proved to be particularly efficient in order to analyze the microstructural characteristics in terms of reinforce fibre distribution and orientation in glass fibre reinforced composites. The spatial distribution of fibre within the polymeric matrix could be detected even in case of fibre characterized by a small diameter (10 micrometers average diameter). Differences in orientation distribution within a sample could be measured using the Mean Intercept Length (MIL) and the fabric tensor. The results presented herein refer to a sample of a 30% by weight glass fibre reinforced polyamide 6, extracted form a thin plate

    Verisig: verifying safety properties of hybrid systems with neural network controllers

    Get PDF
    This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network’s hybrid system with the plant’s, we transform the problem into a hybrid system verification problem which can be solved using state-of-theart reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel’s conjecture is true. We evaluate the applicability and scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural network is used to approximate a model predictive controller

    The isotopic composition of water vapor: from discrete to continuous measurements. A focus on calibration methods

    Get PDF
    The water residence time in the atmosphere is approximately nine days, the shortest residence time in any major reservoir of the whole water cycle on the planet. Nevertheless, water vapor is a key factor in climate and hydrology due to its dynamic behavior. The isotopic composition of water vapor can highlight several processes of the water cycle that link the water reservoirs to the atmosphere (Galewsky et al., 2016). In the past, the isotopic composition of water vapor was generally inferred from precipitation data, assuming isotopic equilibrium between rain and water vapor. This assumption works well when precipitation is abundant but gives misleading results when precipitation is scarce. A common method to determine the isotopic composition of water vapor is the cryotrapping technique, proposed by Craig et al., (1963). Cryotrapping consists in freezing all the moisture content of the air (to avoid fractionation) and analyze the liquid sample with the regular mass spectrometry technique. This process includes the designing of customized cold traps and usually requires several man-hours due to the long sampling time (2 - 8 hours per sample). With the advent of the laser absorption spectrometry (LAS) technique is now possible to determine the isotopic composition of water vapor with sampling time down to seconds. This novel technique increases our knowledge about the isotopic composition of water vapor and gives a substantial help in our understanding of the water cycle, both on global and local scales. However, the continuous measurement of isotopic composition of water vapor requires a specific method to calibrate the large amount of data resulting as the output of a Cavity Ring-Down Spectroscopy (CRDS) analyzer. This includes the production of vapor with known isotopic composition, determination of the response of the analyzer to different humidity levels and correction of the instrumental drift. In this work, we present a summary of potential calibration techniques for continuous measurements of the isotopic composition of water vapor. The study goes in-depth on the developing of a customized calibration unit for a commercial CRDS analyzer (Picarro L1102i). Continuous measurements will be compared to water vapor samples collected with cryotraps and several continuous measurements will be presented highlighting sub-daily processes in the atmospheric boundary layer

    Interannual analysis of high spatially-resolved δ18O and δ2H data in precipitation across North-East Italy

    Get PDF
    Stable water isotopes are widely-used tracers to investigate hydrological processes occurring in the atmosphere and to determine the geospatial origin of water, i.e. to acquire useful information about the hydrological cycles over catchment basins and to find the origin of water recharging rivers, aquifers, and springs. Mapping the isotopic composition of precipitation provides hydrological and climate information at regional and global scales. However, the isotopic composition of precipitation is usually analyzed at large scales with a limited spatial resolution. In Italy, a few studies mapped the oxygen stable isotopes using annually-averaged data, not accounting for the strong seasonality of the isotopic composition linked to climatic and weather factors. To partially fill this gap, the present study proposes a detailed analysis of more than 2250 isotope data (δ18O, δ2H, and deuterium excess) related to precipitations collected in the Friuli Venezia Giulia (FVG) region (Italy) with monthly or seasonal frequency in 36 sites between 1984 and 2015. The FVG region lies at the north-eastern end of Italy, bordering Austria in the North and Slovenia in the East, and extends over ~7.9·103 km2. From a hydrogeological point of view, FVG is an interesting case study. Large highly-permeable carbonate aquifers are present in the Alps and Prealps, while the southern part of the region is characterized by an alluvial plain, split by the spring belt into two sectors: the High Plain in the North, characterized by an highly-permeable unconfined aquifer, and the Low Plain in the South, characterized by a system of confined and artesian aquifers. All the aquifers are recharged by the effective precipitations which in the FVG exhibits among the highest annual precipitation rates in Italy (with peaks >3000 mm/year). For the present research, the isotopic data were used: (i) to analyze the spatial and seasonal variability of isotopic composition; (ii) to relate water isotopes with orography and weather parameters collected from meteorological stations as well as using ECMWF ERA5 reanalysis; (iii) to reconstruct the local meteoric water lines across the FVG at annual and seasonal bases; (iv) to quantify interannual trends and analyze their spatial distribution; and (iv) to model the spatial distribution of isotope content in precipitation and create annual and seasonal maps

    Use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation beam

    Get PDF
    This work investigates the use of XR-QA2 radiochromic films for quantitative imaging of a synchrotron radiation (SR) beam. Pieces (200 7 30 mm2) of XR-QA2 film were irradiated in a plane transverse to the beam axis, at the SYRMEP beamline at ELETTRA (Trieste), with a monochromatic beam of size 170 7 3.94 mm2 (H 7 V) and energy of 28, 35, 38 or 40 keV. The response was calibrated in terms of average air kerma (1\uf02d20 mGy), measured with a calibrated ionization chamber. Films were digitized in reflectance mode using a flatbed scanner. The 16-bit red channel was used. The net\uf020reflectance was then converted to photon fluence per unit air kerma (mm-2 mGy-1). The SR beam profile was acquired also with a scintillator (GOS) based, fiberoptic coupled CCD camera as well as with a scintillator based flat panel detector. Horizontal profiles obtained with the two modalities were compared, evaluated in a ROI of 17.71 7 0.59 mm2, across the beam centre. Once corrected for flat field, the CCD profile was scaled in order to have the same average value as the normalized profile acquired with the gafchromic film. The same procedure was followed for the beam images acquired with the flat panel detector. Horizontal and vertical line profiles acquired with the radiochromic film show an uneven 2D distribution of the beam intensity, with variations in the order of 15\uf02d20% in the horizontal direction, while the statistical uncertainties evaluated for the radiochromic dose measurements were 6% at 28 keV. Larger variations up to 64% were observed in the vertical direction. The response of the radiochromic film is comparable to that of the other imaging detectors, within less than 5% variation

    X-ray computed microtomography of late copper age decorated bowls with cross-shaped foots from central Slovenia and the Trieste Karst (North-Eastern Italy): technology and paste characterization.

    Get PDF
    About 20 Late Copper Age bowls with cross-shaped foots from Deschmann\u2019s pile dwellings (Ljubljansko barje, central Slovenia) and Trieste Karst (North-Eastern Italy) have been investigated using X-ray computed microtomography (microCT) in order to study the vessel-forming technique, to characterise their pastes and to test the hypothesis that some Karst bowls could have been imported from nowadays central Slovenia or even more distant regions. In three selected virtual slices per sample, clay, lithic inclusions and pores have been segmented and quantified. In addition, the area, maximum length and width of each lithic inclusion have been calculated. Then, the microCT-derived results have been statistically analysed by principal component analysis (PCA). The orientation of pores and disjunctions in microCT volumes show that the basins of the bowls were built using mainly the coiling technique, while the base was shaped starting from a central piece, to which a layer of clay was added and then reshaped in order to produce the foots. The Slovenian bowls include both medium/coarse-grained and very fine- or fine-grained vessels mainly tempered with carbonate inclusions. The pastes of the Karst bowls are considerably heterogeneous. One bowl was most likely imported to the Karst but not from central Slovenia as it shows peculiar components, shape and decoration. The other two imported vessels show a very fine-grained paste comparable to the one of several samples from Deschmann\u2019s pile dwellings. Such technological similarity is confirmed by PCA of microCT data and petrographic observations. Our study confirms the existence of strong cultural connections between central Slovenia and the northernmost Adriatic coast during the Late Copper Age
    • …
    corecore