
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

4-2019

Verisig: verifying safety properties of hybrid systems with neural Verisig: verifying safety properties of hybrid systems with neural

network controllers network controllers

Radoslav Ivanov
University of Pennsylvania, rivanov@cis.upenn.edu

James Weimer
University of Pennsylvania, weimerj@cis.upenn.edu

Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

George J. Pappas
University of Pennsylvania, pappasg@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee, "Verisig: verifying safety
properties of hybrid systems with neural network controllers", 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC 2019) , 169-178. April 2019. http://dx.doi.org/10.1145/
3302504.3311806

22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2019), Montreal, Canada,
April, 16-18, 2019

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/859
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/287648392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F859&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/3302504.3311806
http://dx.doi.org/10.1145/3302504.3311806
http://hscc2019.eecs.umich.edu/
https://repository.upenn.edu/cis_papers/859
mailto:repository@pobox.upenn.edu

Verisig: verifying safety properties of hybrid systems with neural network Verisig: verifying safety properties of hybrid systems with neural network
controllers controllers

Abstract Abstract
This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop
systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact
that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the
neural network into an equivalent hybrid system. By composing the network’s hybrid system with the
plant’s, we transform the problem into a hybrid system verification problem which can be solved using
state-of-theart reachability tools. We show that reachability is decidable for networks with one hidden
layer and decidable for general networks if Schanuel’s conjecture is true. We evaluate the applicability and
scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural
network is used to approximate a model predictive controller.

Keywords Keywords
Neural Network Verification, Hybrid Systems with Neural Network Controllers, Learning-Enabled
Components

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
22nd ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2019), Montreal,
Canada, April, 16-18, 2019

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/859

http://hscc2019.eecs.umich.edu/
https://repository.upenn.edu/cis_papers/859

Verisig: verifying safety properties of hybrid systems with
neural network controllers

Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, Insup Lee

University of Pennsylvania

Philadelphia, Pennsylvania

{rivanov,weimerj,alur,pappasg,lee}@seas.upenn.edu

ABSTRACT
This paper presents Verisig, a hybrid system approach to verifying

safety properties of closed-loop systems using neural networks

as controllers. We focus on sigmoid-based networks and exploit

the fact that the sigmoid is the solution to a quadratic differential

equation, which allows us to transform the neural network into

an equivalent hybrid system. By composing the network’s hybrid

system with the plant’s, we transform the problem into a hybrid

system verification problem which can be solved using state-of-the-

art reachability tools. We show that reachability is decidable for

networks with one hidden layer and decidable for general networks

if Schanuel’s conjecture is true. We evaluate the applicability and

scalability of Verisig in two case studies, one from reinforcement

learning and one in which the neural network is used to approxi-

mate a model predictive controller.

CCS CONCEPTS
•Theory of computation→Timed andhybridmodels; • Soft-
ware and its engineering → Formal methods; • Computing
methodologies→ Neural networks;

KEYWORDS
Neural Network Verification, Hybrid Systems with Neural Network

Controllers, Learning-Enabled Components

1 INTRODUCTION
In recent years, deep neural networks (DNNs) have been success-

fully applied to multiple challenging tasks such as image process-

ing [29], reinforcement learning [20], learning model predictive

controllers (MPCs) [26], and games such as Go [27]. These results

have inspired system developers to use DNNs in safety-critical

Cyber-Physical Systems (CPS) such as autonomous vehicles [3]

and air traffic collision avoidance systems [14]. At the same time,

several recent incidents (e.g., Tesla [1] and Uber [3] autonomous

driving crashes) have underscored the need to better understand

DNNs and verify safety properties about CPS using such networks.

The traditional way of assessing a learning algorithm’s perfor-

mance is through bounding the expected generalization error (EGE)

of a trained classifier, i.e., the expected difference between the

classifier’s error on training versus test examples [21]. The EGE

can be usually bounded (e.g., in a probably approximately correct

This material is based upon work supported by the Air Force Research Laboratory

(AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Contract

No. FA8750-18-C-0090. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect

the views of the AFRL, DARPA, the Department of Defense, or the United States

Government. This work was supported in part by NSF grant CNS-1837244. This

research was supported in part by ONR N000141712012.

sense [16]) by assuming that a large enough training set satisfy-

ing some statistical assumptions (e.g., independent and identically

distributed examples) is available. However, it is difficult to obtain

tight EGE bounds for DNNs due to the high-dimensional input

and parameter settings DNNs are used in (e.g., thousands of inputs,

such as pixels in an image, and millions of parameters) [37]. Thus,

it remains a challenge to bound the classification error of DNNs

used in real-world applications; in fact, several robustness issues

with DNNs have been discovered (e.g., adversarial examples [28]).

As an alternative way of assuring the safety of systems using

DNNs, researchers have focused on analyzing the trained DNNs
used in specific systems [6–8, 15, 25, 32, 35, 36]. While analytic

proofs of input/output properties are hard to obtain due to the

complexity of DNNs (namely, they are universal function approxi-

mators [13]), prior work has shown it is possible to formally verify

properties about DNNs by adapting existing satisfiability modulo

theory (SMT) solvers [8, 15] and mixed-integer linear program

(MILP) optimizers [7]. In particular, these techniques can verify lin-

ear properties about the DNN’s output given linear constraints on

the inputs. These approaches exploit the piecewise-linear nature of

the rectified linear units (ReLUs) used in many DNNs and scale well

by encoding the DNN as an input to efficient SMT/MILP solvers.

As a result, existing tools can be used on reasonably sized DNNs,

i.e., DNNs with several layers and a few hundred neurons per layer.

Although the SMT- and MILP-based approaches work well for

the verification of properties of the DNN itself, these techniques

cannot be straightforwardly extended to closed-loop systems using

DNNs as controllers. Specifically, the non-linear dynamics of a

typical CPS plant cannot be captured by these frameworks except

for special cases such as discrete-time linear systems. While it is

in theory possible to also approximate the plant dynamics with a

ReLU-based DNN and verify properties about it, it is not clear how

to relate properties of the approximating system to properties of the

actual plant. As a result, it is challenging to use existing techniques

to reason about the safety of the overall system.

To overcome this limitation, we investigate an alternative ap-

proach, named Verisig, that allows us to verify properties of the

closed-loop system. In particular, we consider CPS using sigmoid-

based DNNs instead of ReLU-based ones and use the fact that the

sigmoid is the solution to a quadratic differential equation. This

allows us to transform the DNN into an equivalent hybrid system

such that a DNN with L layers and N neurons per layer can be

represented as a hybrid system with L + 1 modes and 2N states.

In turn, we compose the DNN’s hybrid system with the plant’s

and verify properties of the composed system’s reachable space by

using existing reachability tools such as dReach [17] and Flow* [4].

To analyze the feasibility of the proposed approach, we show that

the DNN reachability problem (i.e., checking whether the DNN’s

outputs lie in some set given constraints on the inputs) can be

transformed into a real-arithmetic property with transcendental

functions, which is decidable if Schanuel’s conjecture is true [34].

We also prove that reachability is decidable for DNNs with one

hidden layer, given interval constraints on the inputs. Finally, by

casting the problem in the dReach framework, we also show that

reachability is δ -decidable for general DNNs [10].
To evaluate the applicability of Verisig, we consider two case

studies, one from reinforcement learning (RL) and one where a

DNN is used to approximate an MPC with safety guarantees. DNNs

are increasingly being used in these domains, so it is essential to be

able to verify properties of interest about such systems.We trained a

DNN on a benchmark RL problem, Mountain Car (MC), and verified

that the DNN achieves its control task (i.e., drive an underpowered

car up a hill) within the problem constraints. In the MPC approxi-

mation setting, we used an existing technique to approximate an

MPCwith a DNN [26] and verified that a DNN-controlled quadrotor

reaches its goal without colliding into obstacles.

Finally, we evaluate Verisig’s scalability, as used with Flow*, by

training DNNs of increasing size on the MC problem. For each

DNN, we record the time it takes to compute the output’s reachable

set. For comparison, we implemented a piecewise-linear approach

to approximate each sigmoid as suggested in prior work [7]; in

this setting, the problem is cast as an MILP that can be solved

by an optimizer such as Gurobi [24]. We observe that, at similar

levels of approximation, the MILP-based approach is faster than

Verisig+Flow* for small DNNs and DNNs with few layers. However,

the MILP-based approach’s runtimes increase exponentially for

deeper networks whereas Verisig+Flow* scales linearly with the

number of layers since the same computation is run for each layer.

This is another positive feature of our technique since deeper net-

works are known to learn more efficiently than shallow ones [31].

In summary, this paper has three contributions: 1) we develop an

approach to transform a DNN into a hybrid system, which allows

us to cast the closed-loop system verification problem into a hybrid

system verification problem; 2) we show that the DNN reachability

problem is decidable for DNNs with one hidden layer and decidable

for general DNNs if Schanuel’s conjecture holds; 3) we evaluate both

the applicability and scalability of Verisig using two case studies.

The rest of this paper is organized as follows. Section 2 states

the problem addressed in this work. Section 3 analyzes the decid-

ability of the verification problem, and Section 4 describes Verisig.

Sections 5 and 6 present the case study evaluations in terms of ap-

plicability and scalability. Section 7 provides concluding remarks.

2 PROBLEM FORMULATION
This section formulates the problem considered in this paper. We

consider a closed-loop system, as shown in Figure 1, with states

x , measurements y, and a controller h. The states and measure-

ments are formalized in the next subsection, followed by the (DNN)

controller description and the problem statement itself.

Figure 1: Illustration of the closed-loop system considered
in this paper. The plant model is given as a standard hybrid
system, whereas the controller is a DNN. The problem is to
verify a property of the closed-loop system.

2.1 Plant Model
We assume the plant dynamics are given as a hybrid system. A

hybrid system’s state space consists of a finite set of discrete modes

and a finite number of continuous variables [18]. Within each mode,

continuous variables evolve according to differential equations with

respect to time. Furthermore, each mode contains a set of invariants

that hold true while the system is in that mode. Transitions between

modes are controlled by guards, i.e., conditions on the continuous

variables. Finally, continuous variables can be reset during each

mode transition. The formal definition is provided below.

Definition 1 (Hybrid System). A hybrid system with inputs u
and outputs y is a tuple H = (X ,X0, F ,E, I ,G,R,д) where

• X = XD × XC is the state space with XD = {q1, . . . ,qm } and
XC a manifold;
• X0 ⊆ X is the set of initial states;
• F : X −→ TXC assigns to each discrete mode q ∈ XD a vector
field fq , i.e., ẋc = fq (xc ,u) in mode q;
• E ⊆ XD × XD is the set of mode transitions;
• I : XD −→ 2

XC assigns to q ∈ XD an invariant of the form
I (q) ⊆ XC ;
• G : E −→ 2

XC assigns to each edge e = (q1,q2) a guard
U ⊆ I (q1);
• R : E −→ (2XC −→ 2

XC) assigns to each edge e = (q1,q2) a
reset V ⊆ I (q2);
• д : X −→ Rp is the observation model such that y = д(x).

2.2 DNN Controller Model
ADNN controller maps measurementsy to control inputsu and can

be defined as a function h as follows: h : Rp → Rq . To simplify the

presentation, we assume the DNN is a fully connected feedforward

neural network. However, the proposed technique applies to all

common classes such as convolutional, residual or recurrent DNNs.

As illustrated in Figure 1, a typical DNN has a layered architecture

and can be represented as a composition of its L layers:

h(y) = hL ◦ hL−1 ◦ · · · ◦ h1 (y),

2

where each hidden layer hi , i ∈ {1, . . . ,L − 1}, has an element-wise

(with each element called a neuron) non-linear activation function:

hi (y) = a(Wiy + bi).

Each hi is parameterized by a weight matrixWi and an offset vector

bi . The most common types of activation functions are

• ReLU: a(y) := ReLU (y) = max{0,y},
• sigmoid: a(y) := σ (y) = 1/(1 + e−y),
• hyperbolic tangent: a(y) := tanh(y) = (ey −e−y)/(ey +e−y).

As argued in the introduction, and different from most existing

works that assume ReLU activation functions, this work considers

sigmoid and tanh activation functions (which also fall in the broad

class of sigmoidal functions). Finally, the last layer hL is linear:
1

hL (y) =WLy + bL ,

which is parameterized by a matrixWL and a vector bL .
During training, the parameters (W1,b1, . . . ,WL ,bL) are learned

through an optimization algorithm (e.g., stochastic gradient de-

scent [11]) used on a training set. In this paper, we assume the DNN

is already trained, i.e., all parameters are known and fixed.

2.3 Problem Statement
Given the plant model and the DNN controller model described in

this section, we identify two verification problems. The first one is

the reachability problem for the DNN itself.

Problem 1. Let h be a DNN as described in Section 2.2. The DNN
verification problem, expressed as propertyϕdnn, is to verify a property
ψdnn on the DNN’s outputs u given constraints ξdnn on the inputs y:

ϕdnn (y,u) ≡ (ξdnn (y) ∧ h(y) = u) ⇒ ψdnn (u). (1)

Problem 2 is to verify a property of the closed-loop system.

Problem 2. Let S = h | | HP be the composition of a DNN controller
h (Section 2.2) and a plant P , modeled with a hybrid system HP
(Section 2.1). Given a property ξ on the initial states X0 of P , the
problem, expressed as property ϕ, is to verify a property ψ of the
reachable states of P :

ϕ (X0,x (t)) ≡ ξ (X0) ⇒ ψ (x (t)), ∀t ≥ 0. (2)

Our approach to Problem 1, namely transforming the DNN into

an equivalent hybrid system, also presents a solution to Problem 2

since we can compose the DNN’s hybrid system with the plant’s

and can use existing hybrid system verification tools.

Approach. We approach Problem 1 by transforming h into a hy-
brid system Hh such that if x0 is an initial condition of Hh , then the
only reachable state in the last mode of Hh is h(x0). Problem 2 is ad-
dressed by verifying safety for the composed hybrid system Hh | | HP .

3 ON THE DECIDABILITY OF
SIGMOID-BASED DNN REACHABILITY

Before describing our approach to the problems stated in Section 2,

a natural question to ask is whether these problems are decidable.

The answer is not obvious due to the non-linear nature of the

sigmoid. This section shows that if the DNN’s inputs and outputs

1
The last layer is by convention a linear layer, although it could also have a non-linear

activation, as shown in the Mountain Car case study.

are given as a real-arithmetic property, then reachability can be

stated as a real-arithmetic property with transcendental functions,

which is decidable if Schanuel’s conjecture is true [34]. Furthermore,

we prove decidability for the case of NNs with a single hidden layer,

under mild assumptions on the DNN parameters. Finally, we argue

that by casting the DNN verification problem into a hybrid system

verification problem, we obtain a δ -decidable problem [10].
2

3.1 DNNs with multiple hidden layers
As formalized in Section 2, the reachability property of a DNN h
with inputs y and outputs u has the general form:

ϕ (y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u), (3)

where ξ andψ are given properties on the real numbers. Verifying

properties on the real numbers is undecidable in general. A notable

exception is first-order logic formulas over (R, <,+,−, ·, 0, 1), i.e.,
the language where < is the relation, +, -, and · are functions, and

0 and 1 are the constants [30]; we denote such formulas by R-

formulas. Intuitively, R-formulas are first-order logic statements

where the constraints are polynomial functions of the variables

with integer coefficients. Example R-formulas are ∀x ∀y : xy >
0,∃x : x2 − 2 = 0, and ∃w : xw2 + yw + z = 0.

Another relevant language is (R, <,+,−, ·, exp, 0, 1), which also

includes exponentiation; we denote these formulas byRexp-formulas.

Although it is an open question whether verifying Rexp-formulas is

decidable, it is known that decidability is connected to Schanuel’s

conjecture [34]. Schanuel’s conjecture concerns the transcendence

degree of certain field extensions of the rational numbers and, if

true, would imply that verifying Rexp-formulas is decidable [34].

We focus on the case where ξ andψ are R-formulas. The expo-

nentiation in the sigmoid means thatϕ, however, is not a R-formula.

We show below thatϕ is in fact anRexp-formula, which implies that

DNN reachability is decidable if Schanuel’s conjecture is true [34].

Proposition 3.1. Let h : Rp → Rq be a sigmoid-based DNN with
L − 1 hidden layers (with N neurons each) and rational parameters.
The property ϕ (y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u), where ξ and ψ
are R-formulas, is an Rexp-formula.

Proof. Sinceψ is anR-formula, it suffices to show thatϕ0 (y,u) ≡
ξ (y) ∧ h(y) = u can be expressed as an Rexp-formula. Note that

ϕ0 (y,u) ≡ ξ (y) ∧ h
1

1
=

1

1 + exp{−(w1

1
)⊤y − b1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(wN
1
)⊤y − bN

1
}
∧ . . .

∧ h1L−1 =
1

1 + exp{−(w1

L−1)
⊤hL−2 − b

1

L−1}
∧ . . .

∧ hNL−1 =
1

1 + exp{−(wN
L−1)

⊤hL−2 − b
N
L−1}

∧ u =WL[h
1

L−1, . . . ,h
N
L−1]

⊤ + bL ,

where (w
j
i)
⊤
is row j ofWi , and hl = [h1l , . . . ,h

N
l]
⊤, l ∈ {1, . . . ,L−

1}. The last constraint, call it p (u), is already an R-formula. Let

[Wi]jk = pijk/q
i
jk , with pijk and qijk > 0 integers, and let d0 =

2
Note that the results presented in this section hold for DNNs with sigmoid activation

functions, but similar results can be shown for tanh.

3

q1
11
q1
12
· · ·qL−1Np . To remove fractions from the exponents, we add

extra variables zi and v
j
i and arrive at an equivalent property ϕZ,

which is an Rexp-formula since all denominators are Rexp-formulas:

ϕZ (y,u) ≡ ξ (y) ∧ z0d0 = y ∧ h
1

1
=

1

1 + exp{−(r1
1
)⊤z0 −v

1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(rN
1
)⊤z0 −v

N
1
}
∧v1

1
= b1

1
∧ · · · ∧vN

1
= bN

1
∧ . . .

∧ zL−2d0 = hL−2 ∧ h
1

L−1 =
1

1 + exp{−(r1L−1)
⊤zL−2 −v

1

L−1}
∧ . . .

∧ hNL−1 =
1

1 + exp{−(rNL−1)
⊤zL−2 −v

N
L−1}

∧v1L−1 = b
1

L−1 ∧ · · · ∧v
N
L−1 = b

N
L−1 ∧ p (u),

where r
j
i = w

j
id0 are vectors of integers; v

j
i = b

j
i are R-formulas

since b
j
i are rational. □

Corollary 3.2 ([34]). If Schanuel’s conjecture holds, then veri-
fying the property ϕ (y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u) is decidable
under the conditions stated in Proposition 3.1.

Remark. Note that by transforming the DNN into an equivalent
hybrid system (as described in Section 4), we show that DNN reach-
ability is δ -decidable as well [10]. Intuitively, δ -decidability means
that relaxing all constraints by a rational δ results in a decidable
problem; as shown in prior work [10], reachability is δ -decidable for
hybrid systems with dynamics given by Type 2 computable functions,
which is large class of functions that contains the sigmoid.

3.2 Neural Networks with a single hidden layer
Regardless of whether Schanuel’s conjecture holds, we can show

that DNN reachability is decidable for networkswith a single hidden

layer. In particular, assuming interval bounds are given for each

input, it is possible to transform the reachability property into an

R-formula, thus showing that verifying reachability is decidable.

Theorem 3.3. Let h : Rp → Rq be a sigmoid-based neural net-
work with rational parameters and with one hidden layer (with N
neurons), i.e., h(x) = W2 (σ (W1x + b1)) + b2. Let [W1]i j = pi j/qi j
and let d0 = q11q12 · · ·qNp . Consider the property

ϕ (y,u) ≡ ∃y (y ∈ Iy ∧ u = h(y)) ⇒ ψ (u),

where y = [y1, . . . ,yp]
⊤ ∈ Rp , u = [u1, . . . ,uq]

⊤ ∈ Rq , ψ is
an R-formula, and Iy = [α1, β1] × · · · × [αp , βq] ⊆ R

p , i..e., the
Cartesian product of p one-dimensional intervals. Then verifying
ϕ (y,u) is decidable if, for all i ∈ {1, . . . ,N } and j ∈ {1, . . . ,p}, eb

i
1 ,

eα j /d0 , and eβj /d0 are rational, i.e., bi
1
= ln(bir), α j = d0 ln(α

j
r) and

βj = d0 ln(β
j
r) for some rational numbers bir , α

j
r , and β

j
r .

Proof. The proof technique borrows ideas from [18]. It suffices

to show that ϕ (y,u) is an R-formula. Sinceψ (u) is an R-formula,

we focus on the left-hand side of the implication, call it ϕ0 (y,u):

ϕ0 (y,u) ≡ y ∈ Iy ∧ h
1

1
=

1

1 + exp{−(w1

1
)⊤y − b1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(wN
1
)⊤y − bN

1
}
∧ u =W2[h

1

1
, . . . ,hN

1
]
⊤ + b2,

where (wi
1
)⊤ is row i ofW1. Note that the last constraint in ϕ0 (y,u),

call it p (u), is an R-formula. To remove fractions from the exponen-

tials, we change the limits of y. Consider the property

ϕZ (y,u) ≡ y ∈ I
Z
y ∧ h

1

1
=

1

1 + exp{−(r1
1
)⊤y − b1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(rN
1
)⊤y − bN

1
}
∧ p (u),

where IZy = [α1/d0, β1/d0]×· · ·×[αp/d0, βp/d0] and each r
i
1
= d0w

i
1

is a vector of integers. Note that ϕ0 (y,u) ≡ ϕZ (y,u), since a change
of variables z = y/d0 implies that z ∈ IZy iff y ∈ Iy . To remove expo-

nentials from the constraints, we use their monotonicity property

and transform ϕZ (x ,y) into an equivalent property ϕe (x ,y):

ϕe (y,u) ≡ y ∈ I
e
y ∧ h

1

1
=

1

1 + y
r 1
11

1
· · ·y

r 1
1p
p exp{−b1

1
}

∧ . . .

∧ hN
1
=

1

1 + y
rN
11

1
· · ·y

rN
1p
p exp{−bN

1
}

∧ p (u),

where Iey = [e−β1/d0 , e−α1/d0
] × · · · × [e−βp /d0 , e−αp /d0], and r i

1j is

element j of r i
1
. To see that ϕe (y,u) ≡ ϕZ (y,u), take any y ∈ I

Z
y and

note that exp{−r i
1jyj } = z

r i
1j
j , with zj = e−yj ; thus, z ∈ Iex .

The final step transforms the propertyϕe (y,u) into an equivalent
property ν (y,u) to eliminate negative integers r i

1j in the exponents:

ν (y,u) ≡ y ∈ Iey ∃z ∈ I
e−
y y1z1 = 1 ∧ · · · ∧ ypzp = 1

∧ h1
1
=

1

1 +
∏
j ∈I+

1

y
r 1
1j
j

∏
j ∈I−

1

z
−r 1

1j
j exp{−b1

1
}

∧ . . .

∧ hN
1
=

1

1 +
∏
j ∈I+N

y
rN
1j
j

∏
j ∈I−N

z
−rN

1j
j exp{−bN

1
}

∧ p (u),

where Ie−y = [eα1/d0 , eβ1/d0] × · · · × [eαp /d0 , eβp /d0], I+i = {k |

r i
1k ≥ 0}, and I−i = {k | r

i
1k < 0}. Note that ϕe (y,u) ≡ ν (y,u) since

for r i
1j < 0, the constraint zjyj = 1 implies y

r i
1j
j = z

−r i
1j

j .

Thus, if eb
j
1 , eαi /d0 , and eβi /d0 are rational for all i ∈ {1, . . . ,p},

j ∈ {1, . . . ,N }, one can show that ν (y,u) is an R-formula by multi-

plying all hi
1
constraints by their denominators. All denominators

are positive since yi and zi are constrained to be positive. □

The single-layer assumption in Theorem 3.3 is not too restrictive

since DNNs with one hidden layer are still universal approximators.

At the same time, the technique used to prove Theorem 3.3 cannot

be applied to multiple hidden layers since the DNN becomes an

Rexp-formula in that case. Note that it might be possible to show

more general versions of Theorem 3.3 by relaxing the interval

constraints or the real-arithmetic constraints. Finally, note that the

assumption on the DNN’s weights is mild since a DNN’s weights

can be altered in such a way that they are arbitrarily close to the

original weights while also satisfying the theorem’s requirements.

4

4 DNN REACHABILITY USING HYBRID
SYSTEMS

Having analyzed the decidability of DNN reachability in Section 3,

in this section we investigate an approach to computing the DNN’s

reachable set. In particular, we transform the DNN into an equiva-

lent hybrid system, which allows us to use existing hybrid system

reachability tools such as Flow*. Sections 4.1 and 4.2 explain the

transformation technique, and Section 4.3 provides an illustrative

example. Finally, Section 4.4 discusses existing hybrid system reach-

ability tools. Note that this section focuses on the case of sigmoid

activations; the treatment of tanh activations is almost identical –

the differences are noted in the relevant places in the section.

4.1 Sigmoids as solutions to differential
equations

The main observation that allows us to transform a DNN into an

equivalent hybrid system is the fact that the sigmoid derivative can

be expressed in terms of the sigmoid itself:
3

dσ

dx
(x) = σ (x) (1 − σ (x)). (4)

Thus, the sigmoid can be treated as a quadratic dynamical system.

Since we would like to know the possible values of the sigmoid

for a given set of inputs, we introduce a “time” variable t that is
multiplied by the inputs. In particular, consider the proxy function

д(t ,x) = σ (tx) =
1

1 + e−xt
, (5)

such that д(1,x) = σ (x) and, by the chain rule,

∂д

∂t
(t ,x) = д̇(t ,x) = xд(t ,x) (1 − д(t ,x)). (6)

Thus, by tracing the dynamics of д until time t = 1, we obtain ex-

actly the value of σ (x); the initial condition is д(0,x) = 0.5, as can

be verified from (5). While the intermediate values of the sigmoid

states are not considered, the integration allows us to iteratively

construct the sigmoid’s reachable set. To avoid the integration, one

needs to find a computationally cheap, yet expressive, represen-

tation of this reachable set. We leave investigating this approach

for future work. Since each neuron in a sigmoid-based DNN is a

sigmoid function, we can use the proxy function д to transform the

entire DNN into a hybrid system, as described next.

4.2 Deep Neural Networks as Hybrid Systems
Given the proxy function д described in Section 4.1, we now show

how to transform a DNN into a hybrid system. LetNi be the number

of neurons in hidden layer hi and let hi j denote neuron j in hi , i.e.,

hi j (x) = σ ((w
j
i)
⊤x + b

j
i), (7)

where (w
j
i)
⊤
is row j ofWi and b

j
i is element j of bi . Given hi j , the

corresponding proxy function дi j is defined as follows:

дi j (t ,x) = σ (t · ((w
j
i)
⊤x + b

j
i)) =

1

1 + exp{−t · ((w
j
i)
⊤x + b

j
i)}
,

3
The corresponding differential equation for tanh is (d tanh/dx) (x) = 1 − tanh

2 (x).

where, once again, дi j (1,x) = hi j (x). Note that, by the chain rule,

∂дi j

∂t
(t ,x) = д̇i j (t ,x) = ((w

j
i)
⊤x + b

j
i)дi j (t ,x) (1 − дi j (t ,x)). (8)

Thus, for a given x , the value of hidden layer hi (x) can be obtained

by tracing all дi j (t ,x) until t = 1 (initialized at дi j (0,x) = 0.5).

This suggests that each hidden layer can be represented as a set of

differential equations д̇i j (t ,x), where дi j can be considered a state.

With the above intuition inmind, we now show how to transform

the DNN into an equivalent hybrid system. To simplify notation, we

assume N = Ni for all i ∈ {1, . . . ,L − 1}; we also assume the DNN

has only one output. The proposed approach can be extended to

the more general case by adding more states in the hybrid system.

The hybrid system has one mode for each DNN layer. To en-

sure the hybrid system is equivalent to the DNN, in each mode

we trace дi j (t ,x) until t = 1 by using the differential equations

д̇i j (t ,x) in (8). Thus, we use N continuous states, xP
1
, . . . ,xPN , to

represent the proxy variables for each layer; when in mode i , each
xPj , j ∈ {1, . . . ,N }, represents neuron hi j in the DNN.We also intro-

duce N additional continuous states (one per neuron), x J
1
, . . . ,x JN ,

to keep track of the linear functions within each neuron. The x Ji
states are necessary because the inputs to each neuron are functions

of the xPi states reached in the previous mode.

The hybrid system description is formalized in Proposition 4.1.

The extra mode q0 is used to reset the xPi states to 0.5 and the x Ji
states to their corresponding values inq1. The two extra states, t and
u, are used to store the “time” and the DNN’s output, respectively.

Note that ⊙ denotes Hadamard (element-wise) product.

Proposition 4.1. Let h : Rp → R1 be a sigmoid-based DNN with
L − 1 hidden layers (with N neurons each) and a linear last layer
with one output. The image under h of a given set Iy is exactly the
reachable set for u in mode qL of the following hybrid system:

• Continuous states: xP = [xP
1
, . . . ,xPN]

⊤,x J = [x J
1
, . . . ,x JN]

⊤,
u, t ;
• Discrete states (modes): q0,q1, . . . ,qL ;
• Initial states: xP ∈ Iy , x J = 0,u = 0, t = 0;
• Flow:
– F (q0) = [ẋP = 0, ẋ J = 0, u̇ = 0, ṫ = 1];
– F (qi) = [ẋP = x J ⊙ xP ⊙ (1 − xP), ẋ J = 0, u̇ = 0, ṫ = 1]

for i ∈ {1, . . . ,L − 1};
– F (qL) = [ẋP = 0, ẋ J = 0, u̇ = 0, ṫ = 0];
• Transitions: E = {(q0,q1), . . . , (qL−1,qL)};
• Invariants:
– I (q0) = {t ≤ 0};
– I (qi) = {t ≤ 1} for i ∈ {1, . . . ,L − 1};
– I (qL) = {t ≤ 0};
• Guards:
– G (q0,q1) = {t = 0};
– G (qi ,qi+1) = {t = 1} for i ∈ {1, . . . ,L − 1};
• Resets:
– R (qi ,qi+1) = {x

P = 0.5,x J =Wix
P + bi , t = 0}

for i ∈ {0, . . . ,L − 2};
– R (qL−1,qL) = {u =WLx

P + bL }.

Proof. First note that the reachable set of xP in mode q1 at time

t = 1 is exactly the image of Iy under h1, the first hidden layer.

5

(a) Example DNN. (b) Equivalent hybrid system.

Figure 2: Small example illustrating the transformation from a DNN to a hybrid system.

This is true because at t = 1, xP takes the value of the sigmoid

function. Applying this argument inductively, the reachable set of

xP in mode qL−1 at time t = 1 is exactly the image of Iy under

hL−1 ◦ · · · ◦ h1. Finally, u is a linear function of xP with the same

parameters as the last linear layer of h. Thus, the reachable set for
u in mode qL is the image of Iy under hL ◦ · · · ◦ h1 = h. □

We emphasize that the “time” in the sigmoid dynamics is local

to the DNN. When the DNN’s hybrid system is composed with the

plant’s, a separate time variable will be used to store global time

(which is paused during the sigmoid computation). This captures all

common CPS where the controller is either time- or event-triggered.

4.3 Illustrative Example
To illustrate the transformation process from a DNN to a hybrid

system, this subsection presents a small example, shown in Figure 2.

The two-layer DNN is transformed into an equivalent three-mode

hybrid system. Since all the weights are positive and the sigmoids

are monotonically increasing, the maximum value for the DNN’s

output u is achieved at the maximum values of the inputs, whereas

the minimum value for u is achieved at the minimum values of the

inputs, i.e., u ≥ 3σ (0.3 · 2 + 0.2 · 1 + 0.1) + 5σ (0.1 · 2 + 0.5 · 1 + 0.2)
and u ≤ 3σ (0.3 · 3 + 0.2 · 2 + 0.1) + 5σ (0.1 · 3 + 0.5 · 2 + 0.2). The
same conclusion can be reached about state u in the hybrid system.

4.4 Hybrid System Verification Tools
Depending on the hybrid system model and the desired precision,

there are multiple tools one might use. In the case of linear hybrid

systems, there are powerful tools that scale up to a few thousand

states [9]. For non-linear systems, reachability is undecidable in

general, except for specific subclasses [2, 18]. Despite this negative

result, multiple reachability methods have been developed that have

proven useful in specific scenarios. In particular, Flow* [4] works by

constructing flowpipe overapproximations of the dynamics in each

mode using Taylor Models; although Flow* provides no decidability

claims, it scales well in practice. Alternatively, dReach [17] provides

δ -decidability guarantees for Type 2 computable functions; at the

same time, dReach is not as scalable and could not handle more than

a few dozen variables in the examples tried in this paper. Finally,

one can also use SMT solvers such as z3 [22]; yet, SMT solvers are

not optimized for non-linear arithmetic and do not scale well either.

Figure 3: Mountain Car problem [23]. The car needs to drive
up the left hill first in order to gather enough momentum.

In this paper, we use Flow* due to its scalability; as shown in the

evaluation, it efficiently handles systems with a few hundred states,

i.e., DNNs with a few hundred neurons per layer. Furthermore, the

mildly non-linear nature of the sigmoid dynamics suggests that the

approximations used in Flow* are sufficiently precise so as to verify

interesting properties. This is illustrated in the case studies as well

as in the scalability evaluation in Section 6.

Finally, note that all existing tools have been developed for large

classes of hybrid systems and do not exploit the specific properties

of the sigmoid dynamics, e.g., they are monotonic and polynomial.

For example, in some cases it is possible to symbolically compute the

reachable set of monotone systems [5], although directly applying

this approach to our setting does not work due to the large state

space. Thus, developing a specialized sigmoid reachability tool is

bound to greatly improve scalability and precision; since this paper

is a proof of concept, developing such a tool is left for future work.

5 CASE STUDY APPLICATIONS
This section presents two case studies in order to illustrate possi-

ble use cases for the proposed verification approach. These case

studies were chosen in domains where DNNs are used extensively

as controllers, with weak worst-case guarantees about the trained

network. This means it is essential to verify properties about these

closed-loop systems in order to assure their functionality. The first

case study, presented in Section 5.1, is Mountain Car, a benchmark

problem in RL. Section 5.2 presents the second case study in which

a DNN is used to approximate an MPC with safety guarantees.

6

5.1 A Reinforcement Learning Case Study
This subsection illustrates how Verisig could be used on a bench-

mark RL problem, namely Mountain Car (MC). In MC, an under-

powered car must drive up a steep hill, as shown in Figure 3. Since

the car does not have enough power to accelerate up the hill, it

needs to drive up the opposite hill first in order to gather enough

momentum. The learning task is to learn a controller that takes as

input the car’s position and velocity and outputs an acceleration

command. The car has the following discrete-time dynamics:

pk+1 = pk +vk

vk+1 = vk + 0.0015uk − 0.0025 ∗ cos (3pk),

where uk is the controller’s input, and pk and vk are the car’s

position and velocity, respectively, with p0 chosen uniformly at

random from [−0.6,−0.4] andv0 = 0. Note thatvk is constrained to

be within [−0.07, 0.07] andpk is constrained to bewithin [−1.2, 0.6],

thereby introducing (hybrid) mode switches when these constraints

are violated. We consider the continuous version of the problem

such that uk is a real number between -1 and 1.

During training, the learning algorithm tries different control

actions and observes a reward. The reward associated with a control

action uk is −0.1u2k , i.e., larger control inputs are penalized more

so as to avoid a “bang-bang” strategy. A reward of 100 is received

when the car reaches its goal. The goal of the training algorithm is

to maximize the car’s reward. The training stage typically occurs

over multiple episodes (if not solved, an episode is terminated after

1000 steps) such that various behaviors can be observed. MC is

considered “solved” if, during testing, the car goes up the hill with

an average reward of at least 90 over 100 consecutive trials.

Using Verisig, one can strengthen the definition of a “solved” task

and verify that the car will go up the hill with a reward of at least

90 starting from any initial condition. To illustrate this, we trained

a DNN controller for MC in OpenAI Gym [23], a toolkit for devel-

oping and comparing algorithms on benchmark RL problems. We

utilized a standard actor/critic approach for deep RL problems [19].

This is a two-DNN setting in which one DNN (the critic) learns

the reward function, whereas the other one (the actor) learns the

control. Once training is finished, the actor is deployed as the DNN

controller for the closed-loop system. We trained a two-hidden-

layer sigmoid-based DNN with 16 neurons per layer; the last layer

has a tanh activation function in order to scale the output to be

between -1 and 1. Note that larger networks were also trained in

order to evaluate scalability, as discussed in Section 6.

To verify that the car will go up the hill with a reward of at

least 90, we transform the DNN into an equivalent hybrid system

using Verisig and compose it with the car’s hybrid system. We use

Verisig+Flow* to verify the desired property on the composed sys-

tem, given any initial position in [-0.6, -0.4]. Note that we split the

initial condition into subsets and verify the property for each subset

separately. This is necessary because the DNN takes very different

actions from different initial conditions, e.g., large negative inputs

when the car is started from the leftmost position and small nega-

tive inputs for larger initial conditions. This variability introduces

uncertainty in the dynamics and causes large approximation errors.

As part of future work, we will investigate a refinement procedure

in order to optimize the partitioning of the initial condition.

Initial condition Verified Reward # steps Time

[-0.41, -0.40] Yes >= 90 <= 100 1336s

[-0.415, -0.41] Yes >= 90 <= 100 1424s

[-0.42, -0.415] Yes >= 90 <= 100 812s

[-0.43, -0.42] Yes >= 90 <= 100 852s

[-0.45, -0.43] Yes >= 90 <= 100 886s

[-0.48, -0.45] Yes >= 90 <= 100 744s

[-0.50, -0.48] Yes >= 90 <= 100 465s

[-0.53, -0.50] Yes >= 90 <= 100 694s

[-0.55, -0.53] Yes >= 90 <= 100 670s

[-0.57, -0.55] Yes >= 90 <= 100 763s

[-0.58, -0.57] Yes >= 90 <= 109 793s

[-0.59, -0.58] Yes >= 90 <= 112 1307s

[-0.6, -0.59] No N/A N/A N/A

Table 1: Verisig+Flow* verification times (in seconds) for dif-
ferent initial conditions of MC. The third column shows the
verified lower bound of reward. The fourth column shows
the verified upper bound of the number of dynamics steps.

-1 -0.5 0 0.5 1

DNN Control Input

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

C
a

r
P

o
s
it
io

n

Verisig+Flow* Approximation Sets Over Time

Figure 4: Verisig+Flow* approximation sets over time.

Table 1 presents the verification times for each subset. Most

properties are verified within 10-15 minutes; the properties at either

end of the initial set take longer to verify due to branching in the

car’s hybrid system as caused by the car reaching the minimum

allowed position. For most initial conditions, we verify that the car

will go up the hill with a reward of at least 90 and in at most 100

dynamics steps. Interestingly, after failing to verify the property for

the subset [-0.6, -0.59], we found a counter-example when starting

the car from p0 = −0.6: the final reward was 88. This suggests that

Verisig is not only useful for verifying properties of interest but it

can also be used to identify areas for which these properties do not

hold. In the case of MC, this information can be used to retrain the

DNN by starting more episodes from [-0.6, -0.59] since the likely

reason the DNN does not perform well from that initial set is that

not many episodes were started from there during training.

Finally, we illustrate the progression of the approximation sets

created by Flow*. Figure 4 shows a two-dimensional projection of

the approximation sets over time (for the case p0 ∈ [−0.5,−0.48]),
with the DNN control inputs plotted on the x-axis and the car’s

position on the y-axis. Initially, the uncertainty is fairly small and

remains so until the car goes up the left hill and starts going quickly

downhill. At that point, the uncertainty increases but it remains

within the tolerance necessary to verify the desired property.

7

Figure 5: Overview of the quadrotor case study, as projected
to the (px ,py)-plane. The quadrotor follows its plan in order
to reach the goal (star) without colliding into obstacles (red
circles).We verify that, starting fromany initial condition in
the black box, the quadrotor does not deviate from its plan
by more than 0.32m and does not collide into obstacles.

5.2 Using DNNs to Approximate MPCs with
Safety Guarantees

To further evaluate the applicability of Verisig, we also consider a

case study in which a DNN is used to approximate an MPC with

safety guarantees. DNNs are used to approximate controllers for

several reasons: 1) the MPC computation is not feasible at run-

time [12]; 2) storing the original controller (e.g., as a lookup table)

requires too muchmemory [14]; 3) performing reachability analysis

by discretizing the state space is infeasible for high-dimensional

systems [26]. We focus on the latter scenario in which the aim is to

develop a DNN controller with safety guarantees.

As described in prior work [26], it is possible to train a DNN to

approximate an MPC in the case of control-affine systems whose

goal is to follow a piecewise-linear plan. In this case, the optimal

controller is “bang-bang”, i.e., it is effectively a classifier mapping a

system state to one of finitely many control actions. Once the DNN

is trained, it can be used on the system instead of theMPC. Although

worst-case deviations from the planner can be obtained for specific

initial points, it is not known whether the DNN controller is safe

for a range of initial conditions. Thus, we use Verisig to verify the

safety of such a closed-loop system.

In this case study, we consider a six-dimensional control-affine

model for a quadrotor controlled by a DNN and verify that the

quadrotor reaches its goal without colliding into nearby obstacles.

Specifically, the quadrotor follows a planner, given as a piecewise-

linear system, and tries to stay as close to the planner as possible.

The setup, as projected to the (px ,py)-plane, is shown in Figure 5.

Initial condition on (prx ,p
r
y) Property Time

[−0.05,−0.025] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 2766s

[−0.025, 0] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 2136s

[0, 0.025] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 2515s

[0.025, 0.05] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 897s

[−0.05,−0.025] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 1837s

[−0.025, 0] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 1127s

[0, 0.025] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 1593s

[0.025, 0.05] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 894s

[−0.05,−0.025] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 1376s

[−0.025, 0] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 953s

[0, 0.025] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 1038s

[0.025, 0.05] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 647s

[−0.05,−0.025] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 3534s

[−0.025, 0] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 2491s

[0, 0.025] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 2142s

[0.025, 0.05] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 1090s

Table 2: Verisig+Flow* verification times (in seconds) for
different initial conditions of the quadrotor case study. All
properties were verified. Note that r3 = [prx ,p

r
y ,p

r
z].

The quadrotor and planner dynamics models are as follows:

q̇ :=



ṗ
q
x

ṗ
q
y
ṗ
q
z
v̇
q
x
v̇
q
y
v̇
q
z



=



v
q
x
v
q
y
v
q
z

дtanθ
−дtanϕ
τ − д



, ṗ :=



ṗ
p
x

ṗ
p
y
ṗ
p
z
v̇
p
x
v̇
p
y
v̇
p
z



=



bx
by
bz
0

0

0



, (9)

wherep
q
x ,p

q
y ,p

q
z andp

p
x ,p

p
y ,p

p
z are the quadrotor and planner’s posi-

tions, respectively; v
q
x ,v

q
y ,v

q
z and v

p
x ,v

p
y ,v

p
z are the quadrotor and

planner’s velocities, respectively; θ , ϕ and τ are control inputs (for

pitch, roll and thrust); д = 9.81m/s2 is gravity; bx ,by ,bz are piece-

wise constant functions of time. The control inputs have constraints

ϕ,θ ∈ [−0.1, 0.1] and τ ∈ [7.81, 11.81]; the planner velocities have
constraints bx ,by ,bz ∈ [−0.25, 0.25]. The controller’s goal is to en-

sure the quadrotor is as close to the planner as possible, i.e., stabilize

the system of relative states r := [prx ,p
r
y ,p

r
z ,v

r
x ,v

r
y ,v

r
z]
⊤ = q − p.

To train a DNN controller for the model in (9), we follow the

approach described in prior work [26]. We sample multiple points

from the state space over a horizonT and train a sequence of DNNs,

one for each dynamics step (as discretized using the Runge-Kutta

method). Once two consecutive DNNs have similar training error,

we interrupt training and pick the last DNN as the final controller.

The DNN takes a relative state as input and outputs one of eight

possible actions (the “bang-bang” strategy implies there are two

options per control action). We trained a two-hidden layer tanh-

based DNN, with 20 neurons per layer and a linear last layer.

Given the trained DNN controller, we verify the safety property

shown in Figure 5. Specifically, the quadrotor is started from an

initial condition (prx (0),p
r
y (0)) ∈ [−0.05, 0.05] × [−0.05, 0.05] (the

other states are initialized at 0) and needs to stay within 0.32m

from the planner in order to reach its goal without colliding into

obstacles. Similar to the MC case study, we split the initial condition

into smaller subsets and verify the property for each subset.

8

2 4 6 8 10

Number of layers

0

1

2

3

4

5

T
im

e
 (

s
e
c
o
n
d
s
)

16 Neurons Per Layer

M+G
V+F

(a) 16 neurons per layer.

2 4 6 8 10

Number of layers

0

5

10

T
im

e
 (

s
e
c
o
n
d
s
)

32 Neurons Per Layer

M+G
V+F

(b) 32 neurons per layer.

2 4 6 8 10

Number of layers

0

50

100

150

T
im

e
 (

s
e

c
o

n
d

s
)

64 Neurons Per Layer

M+G
V+F

(c) 64 neurons per layer.

2 4 6 8 10

Number of layers

0

250

500

750

1000

1250

T
im

e
 (

s
e
c
o
n
d
s
)

128 Neurons Per Layer

M+G
V+F

(d) 128 neurons per layer.

Figure 6: Comparison between the verification times of Verisig+Flow* (V+F) and the MILP-based approach with Gurobi (M+G)
for DNNs of increasing size. In each figure, the number of neurons is fixed and number of layers varies from two to 10.

The verification times of Verisig+Flow* for each subset are shown

in Table 2. Most cases take less than 30 minutes to verify, which is

acceptable for an offline computation. Note that this verification

task is harder than MC not because of the larger dimension of the

state space but because of the discrete DNN outputs. This means

that Verisig+Flow* needs to enumerate and verify all possible paths

from the initial set. This process is computationally expensive since

the number of paths could grow exponentially with the length of

the scenario (set to 30 steps in this case study). One approach to

reduce the computation time would be to use the Markov prop-

erty of dynamical systems and skip states that have been verified

previously. We plan to explore this idea as part of future work.

In summary, this section shows that Verisig can verify both safety

(avoiding obstacles) and bounded liveness (going up a hill) proper-

ties in different and challenging domains. The plant models can be

nonlinear systems specified in either discrete or continuous time.

The next section shows that Verisig+Flow* also scales well to larger

DNNs and is competitive with other approaches for verification of

DNN properties in isolation.

6 COMPARISONWITH OTHER DNN
VERIFICATION TECHNIQUES

This section complements the Verisig evaluation in Section 5 by

analyzing the scalability of the proposed approach. We train DNNs

of increasing size on the MC problem and compare the verification

times against the times produced by another suggested approach to

the verification of sigmoid-based DNNs, namely one using a MILP

formulation of the problem [7]. We verify properties about DNNs

only (without considering the closed-loop system), since existing

approaches cannot be used to argue about the closed-loop system.

As noted in the introduction, the two main classes of DNN veri-

fication techniques that have been developed so far are SMT- and

MILP-based approaches to the verification of ReLU-based DNNs.

Since both of these techniques were developed for piecewise-linear

activation functions, neither of them can be directly applied to

sigmoid-based DNNs. Yet, it is possible to extend them to sigmoids

by bounding the sigmoid from above and below by piecewise-linear

functions. In particular, we implement the MILP-based approach

for comparison purposes since it can also be used to reason about

the reachability of a DNN, similar to Verisig+Flow*.

The encoding of each sigmoid-based neuron into an MILP prob-

lem is described in detail in [7]. It makes use of the so called Big M

method [33], where conservative upper and lower bounds are de-

rived for each neuron using interval analysis. The encoding uses a

binary variable for each linear piece of the approximating function

such that when that variable is equal to 1, the inputs are within

the bounds of that linear piece (all binary variables have to sum up

to 1 in order to enforce that the inputs are within the bounds of

exactly one linear piece). Thus, the MILP contains as many binary

variables per neuron as there are linear pieces in the approximating

function. Finally, one can use Gurobi to solve theMILP and compute

a reachable set of the outputs given constraints on the inputs.

To compare the scalability of the two approaches, we trained

multiple DNNs on the MC problem by varying the number of layers

from two to ten and the number of neurons per layer from 16 to 128.

A DNN is assumed to be “trained” if most tested episodes result in

a reward of at least 90 – since this is a scalability comparison only,

no closed-loop properties were verified. For each trained DNN, we

record the time to compute the reachable set of control actions

for input constraints p0 ∈ [−0.52,−0.5] and v0 = 0 using both

Verisig+Flow* and the MILP-based approach. For fair comparison,

the two techniques were tuned to have similar approximation error;

thus, we used roughly 100 linear pieces to approximate the sigmoid.

The comparison is shown in Figure 6. The MILP-based approach

is faster for small networks and for large networks with few layers.

As the number of layers is increased, however, the MILP-based

approach’s runtimes increase exponentially due to the increasing

number of binary variables in the MILP. Verisig+Flow*, on the

other hand, scales linearly with the number of layers since the

same computation is run for each layer (i.e., in each mode). This

means that Verisig+Flow* can verify properties about fairly deep

networks; this fact is noteworthy since deeper networks have been

shown to learn more efficiently than shallow ones [31].

Another interesting aspect of the behavior of the MILP-based

approach can be seen in Figure 6c. The verification time for the nine-

layer DNN is much faster than for the eight-layer one, probably

due to Gurobi exploiting a corner case in that specific MILP. This

suggests that the fast verification times of the MILP-based approach

should be treated with caution as it is not knownwhich example can

trigger a worst-case behavior. In conclusion, Verisig+Flow* scales

linearly and predictably with the number of layers and can be used

in a wide range of closed-loop systems with DNN controllers.

9

7 CONCLUSION AND FUTUREWORK
This paper presented Verisig, a hybrid system approach to verifying

safety properties of closed-loop systems with DNN controllers. We

showed that the verification problem is decidable for networks

with one hidden layer and decidable for general DNNs if Schanuel’s

conjecture is true. The proposed technique uses the fact that the

sigmoid is a solution to a quadratic differential equation, which

allows us to transform the DNN into an equivalent hybrid system.

Given this transformation, we cast the DNN verification problem

into a hybrid system verification problem, which can be solved by

existing reachability tools such as Flow*. We evaluated both the

applicability and scalability of Verisig+Flow* in two case studies.

For future work, it would be interesting to investigate whether

one could use sigmoid-based DNNs to approximate DNNs with

other activation functions (with analytically bounded error). This

would enable us to verify properties about arbitrary DNNs and

would greatly expand the application domain of Verisig.

A second direction for future work is to speed up the verifica-

tion computation by exploiting the fact that the sigmoid dynamics

are monotone and quadratic. Although the proposed technique is

already scalable to a wide range of applications, it still makes use of

a general-purpose hybrid system verification tool, i.e., Flow*. That

is why, developing a specialized sigmoid verification tool might

bring significant benefits in terms of scalability and precision.

ACKNOWLEDGMENTS
We thank Xin Chen (University of Dayton, Ohio) for his help with

encoding the case studies in Flow*. We also thank Vicenç Rubies

Royo (University of California, Berkeley) for sharing and explaining

his code on approximating MPCs with DNNs. Last, but not least, we

thank Luan Nguyen and Oleg Sokolsky (University of Pennsylvania)

for fruitful discussions about the verification technique.

REFERENCES
[1] US National Highway Traffic Safety Administration. [n. d.]. Investigation PE

16-007. https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.pdf.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. 1995. The algorithmic analysis of hybrid

systems. Theoretical computer science 138, 1 (1995), 3–34.
[3] US National Transportation Safety Board. [n. d.]. Preliminary Re-

port Highway HWY18MH010. https://www.ntsb.gov/investi-

gations/AccidentReports/Reports/HWY18MH010-prelim.pdf.

[4] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An analyzer for non-

linear hybrid systems. In International Conference on Computer Aided Verification.
Springer, 258–263.

[5] S. Coogan and M. Arcak. 2015. Efficient finite abstraction of mixed monotone

systems. In Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control. ACM, 58–67.

[6] T. Dreossi, A. Donzé, and S. A. Seshia. 2017. Compositional falsification of cyber-

physical systems with machine learning components. In NASA Formal Methods
Symposium. Springer, 357–372.

[7] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. 2018. Output Range Analysis

for Deep Feedforward Neural Networks. In NASA Formal Methods Symposium.

Springer, 121–138.

[8] R. Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural

networks. In International Symposium on Automated Technology for Verification
and Analysis. Springer, 269–286.

[9] G. Frehse et al. 2011. SpaceEx: Scalable verification of hybrid systems. In Interna-
tional Conference on Computer Aided Verification. 379–395.

[10] S. Gao, S. Kong, W. Chen, and E. Clarke. 2014. Delta-complete analysis for

bounded reachability of hybrid systems. arXiv preprint arXiv:1404.7171 (2014).
[11] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. 2016. Deep learning. Vol. 1.

MIT press Cambridge.

[12] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer. 2018. Learning an approximate

model predictive controller with guarantees. IEEE Control Systems Letters 2, 3
(2018), 543–548.

[13] K. Hornik, M. Stinchcombe, and H.White. 1989. Multilayer feedforward networks

are universal approximators. Neural networks 2, 5 (1989), 359–366.
[14] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer. 2016. Policy

compression for aircraft collision avoidance systems. In Digital Avionics Systems
Conference (DASC), 2016 IEEE/AIAA 35th. IEEE, 1–10.

[15] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. 2017. Reluplex:

An efficient SMT solver for verifying deep neural networks. In International
Conference on Computer Aided Verification. Springer, 97–117.

[16] M. J. Kearns and U. Vazirani. 1994. An introduction to computational learning
theory. MIT press.

[17] S. Kong, S. Gao, W. Chen, and E. Clarke. 2015. dReach: δ -reachability analysis

for hybrid systems. In International Conference on TOOLS and Algorithms for the
Construction and Analysis of Systems. Springer, 200–205.

[18] G. Lafferriere, G. J. Pappas, and S. Yovine. 1999. A new class of decidable hybrid

systems. In International Workshop on Hybrid Systems: Computation and Control.
137–151.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D.

Wierstra. 2015. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015).

[20] V. Mnih et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[21] M. Mohri, A. Rostamizadeh, and A. Talwalkar. 2012. Foundations of machine

learning. MIT press.

[22] L. D. Moura and N. Bjørner. 2008. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 337–340.

[23] OpenAI. [n. d.]. OpenAI Gym. https://gym.openai.com.

[24] Gurobi Optimization. [n. d.]. Gurobi Optimizer. https://gurobi.com.

[25] L. Pulina and A. Tacchella. 2010. An abstraction-refinement approach to verifica-

tion of artificial neural networks. In International Conference on Computer Aided
Verification. Springer, 243–257.

[26] V. R. Royo, D. Fridovich-Keil, S. Herbert, and C. J. Tomlin. 2018. Classification-

based Approximate Reachability with Guarantees Applied to Safe Trajectory

Tracking. arXiv preprint arXiv:1803.03237 (2018).

[27] D. Silver, A. Huang, C. J. Maddison, A. Guez, et al. 2016. Mastering the game of

Go with deep neural networks and tree search. nature 529, 7587 (2016), 484.
[28] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, et al. 2013. Intriguing

properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).
[29] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. 2014. Deepface: Closing the

gap to human-level performance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1701–1708.

[30] A. Tarski. 1998. A decision method for elementary algebra and geometry. In

Quantifier elimination and cylindrical algebraic decomposition. Springer, 24–84.
[31] M. Telgarsky. 2016. Benefits of depth in neural networks. arXiv preprint

arXiv:1602.04485 (2016).
[32] C. E. Tuncali, H. Ito, J. Kapinski, and J. V. Deshmukh. 2018. Reasoning about

safety of learning-enabled components in autonomous cyber-physical systems.

In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 1–6.
[33] R. J. Vanderbei et al. 2015. Linear programming. Springer.
[34] A. J. Wilkie. 1997. Schanuel’s conjecture and the decidability of the real expo-

nential field. In Algebraic Model Theory. Springer, 223–230.
[35] W. Xiang et al. 2018. Verification for Machine Learning, Autonomy, and Neural

Networks Survey. arXiv preprint arXiv:1810.01989 (2018).
[36] W. Xiang, H. D. Tran, and T. T. Johnson. 2017. Output reachable set estimation

and verification for multi-layer neural networks. arXiv preprint arXiv:1708.03322
(2017).

[37] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. 2016. Understanding

deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530
(2016).

10

	Verisig: verifying safety properties of hybrid systems with neural network controllers
	Recommended Citation

	Verisig: verifying safety properties of hybrid systems with neural network controllers
	Abstract
	Keywords
	Disciplines
	Comments

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Plant Model
	2.2 DNN Controller Model
	2.3 Problem Statement

	3 On the Decidability of Sigmoid-Based DNN Reachability
	3.1 DNNs with multiple hidden layers
	3.2 Neural Networks with a single hidden layer

	4 DNN Reachability Using Hybrid Systems
	4.1 Sigmoids as solutions to differential equations
	4.2 Deep Neural Networks as Hybrid Systems
	4.3 Illustrative Example
	4.4 Hybrid System Verification Tools

	5 Case Study Applications
	5.1 A Reinforcement Learning Case Study
	5.2 Using DNNs to Approximate MPCs with Safety Guarantees

	6 Comparison with other DNN verification techniques
	7 Conclusion and Future Work
	Acknowledgments
	References

