94 research outputs found

    An assessment of the benefits of yellow Sigatoka (Mycosphaerella musicola) control in the Queensland Northern Banana Pest Quarantine Area

    Get PDF
    The banana leaf spotting disease yellow Sigatoka is established and actively controlled in Australia through intensive chemical treatments and diseased leaf removal. In the State of Queensland, the State government imposes standards for de-leafing to minimise the risk of the disease spreading in 6 banana pest quarantine areas. Of these, the Northern Banana Pest Quarantine Area is the most significant in terms of banana production. Previous regulations imposed obligations on owners of banana plants within this area to remove leaves from plants with visible spotting on more than 15 per cent of any leaf during the wet season. Recently, this leaf disease threshold has been lowered to 5 per cent. In this paper we examine the likely impact this more-costly regulation will have on the spread of the disease. We estimate that the average net benefit of reducing the diseased leaf threshold is only likely to be $1.4 million per year over the next 30 years, expressed as the annualised present value of tightened regulation. This result varies substantially when the timeframe of the analysis is changed, with shorter time frames indicating poorer net returns from the change in protocols. Overall, the benefit of the regulation change is likely to be minor

    Fusarium wilt of banana, a recurring threat to global banana production

    Get PDF
    TR4 first emerged in Southeast Asia (Ploetz, 1990) and its current rapid spread was analysed by Ordóñez et al. (2015). Subsequent studies showed that the TR4 strain is extremely virulent towards many banana cultivars, including Cavendish cultivars grown in large-scale monoculture plantations for export markets and many banana varieties important for food security and domestic consumption. There are no readily available solutions to manage this disease. Moreover, this global threat connects export trade, strongly dependent on the susceptible Cavendish cultivars, to local production systems wherein a range of banana varieties contributing to food security are also impacted.This research topic aims to provide a platform for information exchange and knowledge sharing. The contributions demonstrate an active research community in search of effective control of FWB. Taken together, the papers provide an overview of our current understanding of the biology and epidemiology of TR4, its management and how integrated and innovative solutions are required and need to be embraced by all stakeholders in an effort to build a sustainable banana industry for the future

    Dry flower disease of Macadamia in Australia caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov

    Get PDF
    Incidence of dry flower disease of macadamia (Macadamia integrifolia), expressed as blight of the flowers, necrosis and dieback of the rachis, is increasing in Australia. In the 2012/13 production season, incidence of dry flower disease resulted in 10% to 30% yield loss in the affected orchards. Etiology of the disease has not been established. This study was established to characterise the disease and identify the causal pathogen. A survey of the major macadamia producing regions in Australia revealed dry flower disease symptoms, regardless of cultivar or location at all stages of raceme development. Based on colony and conidial morphology, the majority (41%) of fungal isolates obtained from tissue samples were identified as Pestalotiopsis and Neopestalotiopsis spp. The phylogeny of the combined partial sequence of the internal transcribed spacer, beta-tubulin and translation elongation factor 1-alpha gene loci, segregated the isolates into two well supported clades, independent of location or part of the inflorescence affected. Further morphological examination supported the establishment of two new species, which are formally described as Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Using spore suspensions of isolates of both species, Koch?s postulates were fulfilled on three macadamia cultivars at all stages of raceme development. To our knowledge, this is the first report of species of Neopestalotiopsis and Pestalotiopsis as causal agents of inflorescence disease in macadamia

    James E. Vanderplank : South African and globally recognised plant pathologist

    Get PDF
    James Edward Vanderplank, best known to plant pathologists globally simply as 'Vanderplank', is widely regarded as one of the world's most influential plant scientists. This recognition stems from his reputation as the founding father of modern quantitative plant disease epidemiology.1 Professional plant pathologists and students in the discipline are familiar with Vanderplank's work as it provides a theoretical framework to study disease epidemics and breeding for disease resistance. The United Nations declaration of 2020 as the international Year of Plant Health provides an apt opportunity to reflect on the contributions Vanderplank has made to both plant pathology and plant breeding.http://www.sajs.co.zahj2021BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Molecular diagnostics of banana Fusarium wilt targeting Secreted-in-Xylem genes

    Get PDF
    Fusarium wilt is currently spreading in banana growing regions around the world leading to substantial losses. The disease is caused by the fungus Fusarium oxysporum f. sp. cubense (Foc), which is further classified into distinct races according to the banana varieties that they infect. Cavendish banana is resistant to Foc race 1, to which the popular Gros Michel variety succumbed last century. Cavendish effectively saved the banana industry, and became the most cultivated commercial variety worldwide. However, Foc tropical race 4 (TR4) subsequently emerged in Southeast Asia, causing significant yield losses due to its high level of aggressiveness to Cavendish and other commonly grown varieties. Preventing further spread is crucially important in the absence of effective control methods or resistant market-acceptable banana varieties. Implementation of quarantine and containment measures depends on early detection of the pathogen through reliable diagnostics. In this study, we tested the hypothesis that secreted in xylem (SIX) genes, which currently comprise the only known family of effectors in F. oxysporum, contain polymorphisms to allow the design of molecular diagnostic assays that distinguish races and relevant VCGs of Foc. We present specific and reproducible diagnostic assays based on conventional PCR targeting SIX genes, using as templates DNA extracted from pure Foc cultures. Sets of primers specifically amplify regions of: SIX6 in Foc race 1, SIX1 gene in TR4, SIX8 in subtropical race 4, SIX9/SIX10 in Foc VCG 0121, and SIX13 in Foc VCG 0122. These assays include simplex and duplex PCRs, with additional restriction digestion steps applied to amplification products of genes SIX1 and SIX13. Assay validations were conducted to a high international standard including the use of 250 Fusarium spp. isolates representing 16 distinct Fusarium species, 59 isolates of F. oxysporum, and 21 different vegetative compatibility groups (VCGs). Tested parameters included inter and intraspecific analytical specificity, sensitivity, robustness, repeatability and reproducibility. The resulting suite of assays is able to reliably and accurately detect R1, STR4, TR4 as well as two VCGs (0121 and 0122) causing Fusarium wilt in bananas

    Field evaluation of six Gros Michel banana accessions (Musa spp., AAA group) for agronomic performance, resistance to Fusarium wilt race 1 and yellow Sigatoka

    Get PDF
    Three Gros Michel mutants (‘IBP 5-B’, ‘IBP 5–61’ and ‘IBP 12’) from the Cuban Instituto de Biotecnología de las Plantas, two semi-dwarf Gros Michel varieties (‘Highgate’ and ‘Cocos’) and a Thai accession (‘Hom Thong Mokho’) were evaluated in Australia over a five year period. They were screened for their resistance to Fusarium wilt Race 1 (FocR1) caused by the pathogen Fusarium oxysporum f.sp. cubense, as well as resistance to yellow Sigatoka (Pseudocercospora musae Zimm [teleomorph Mycosphaerella musicola Leach]). They were also grown for a plant and ratoon crop in the tropics (17°S) and a plant crop in the subtropics (28°S) with no disease pressure to record their agronomic characteristics. They were compared with Australian industry standards, ‘Williams’ (AAA, Cavendish subgroup) and ‘Lady Finger’ (AAB, Pome subgroup). In the subtropics the Gros Michel mutants and semi-dwarf accessions were sensitive to cold and very susceptible to FocR1 and yellow Sigatoka while their agronomic performance in the tropics was good, with ‘Highgate’ having the best bunch weight on a shorter, more manageable plant. Of the six accessions evaluated, ‘Hom Thong Mokho’ showed the highest level of resistance to FocR1 although it had poor cold tolerance, as did the other Gros Michel selections, and consequently had low productivity compared to ‘Williams’ and even ‘Lady Finger’. However in the warmer, more humid tropics ‘Hom Thong Mokho's performance was much better and it was less susceptible to yellow Sigatoka than the other Gros Michel selections. Subsequent genetic analysis by Christelová et al. (2011) has revealed that although ‘Hom Thong Mokho’ is marketed as a Gros Michel variety in Asia, it is closer to the Rio subgroup (AAA) of dessert bananas

    A dynamic, web-based resource to identify rust fungi (Pucciniales) in southern Africa

    Get PDF
    Rust fungi (Pucciniales) are some of the most important plant pathogens that cause diseases of agricultural and tree crops. There are approximately 8,000 described species worldwide. The rust fungi of South Africa were extensively studied by Ethel M. Doidge (1887 – 1965), who listed 468 species. Many nomenclatural and taxonomic changes, together with the discovery of new species and incursions of exotic species, have subsequently outdated Doidge’s monograph. To address this problem, we have developed an interactive Lucid key for the identification of 50 species of rust fungi in 17 genera from countries in southern Africa. The key is dynamic and may be updated in real-time. The Lucid key provides a platform to progressively provide descriptions and images for all rust fungi in southern Africa. Plant pathologists and mycologists are invited to participate in the development of this resource

    Fungal genomics challenges the dogma of name-based biosecurity

    Get PDF
    Microorganisms have inadvertently been spread via the global movement and trade of their substrates, such as animals, plants, and soil. This intercontinental exchange in the current era of globalisation has given rise to significant increases in the distribution of known pests and pathogens. Importantly, it has also resulted in many novel, emerging, infectious diseases. Biosecurity and quarantine, which aim to prevent the establishment of foreign or harmful organisms in a non-native area, are under significant pressure due to the massive increases in travel and trade. Traditionally, quarantine regulations have been implemented based on pathogens that already cause significant disease problems on congener hosts in other parts of the world (e.g., Q-bank, available at http://www.q-bank.eu). Well-known pathogens are described, named, and studied to determine their disease cycle, epidemiology, and impact. Their importance is assessed based on their risk of infection, establishment, and economic or environmental consequences. This then shapes phytosanitary practices.The Tree Protection Co-operative Programme (TPCP), THRIP initiative of the Department of Trade and Industry, Department of Science and Technology (DST)/ National Research Foundation (NRF), and Centre of Excellence in Tree Health Biotechnology (CTHB).http://www.plospathogens.orgam2016Forestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologyPlant Scienc

    Soil health and tree decline

    No full text

    Effective control of husk spot

    No full text
    Research update - for effective control of husk spot: progress report MC07003
    • …
    corecore