611 research outputs found

    What is the contribution of physician associates in hospital care in England? A mixed methods, multiple case study.

    Get PDF
    OBJECTIVES: To investigate the deployment of physician associates (PAs); the factors supporting and inhibiting their employment and their contribution and impact on patients' experience and outcomes and the organisation of services. DESIGN: Mixed methods within a case study design, using interviews, observations, work diaries and documentary analysis. SETTING: Six acute care hospitals in three regions of England in 2016-2017. PARTICIPANTS: 43 PAs, 77 other health professionals, 28 managers, 28 patients and relatives. RESULTS: A key influencing factor supporting the employment of PAs in all settings was a shortage of doctors. PAs were found to be acceptable, appropriate and safe members of the medical/surgical teams by the majority of doctors, managers and nurses. They were mainly deployed to undertake inpatient ward work in the medical/surgical team during core weekday hours. They were reported to positively contribute to: continuity within their medical/surgical team, patient experience and flow, inducting new junior doctors, supporting the medical/surgical teams' workload, which released doctors for more complex patients and their training. The lack of regulation and attendant lack of authority to prescribe was seen as a problem in many but not all specialties. The contribution of PAs to productivity and patient outcomes was not quantifiable separately from other members of the team and wider service organisation. Patients and relatives described PAs positively but most did not understand who and what a PA was, often mistaking them for doctors. CONCLUSIONS: This study offers new insights concerning the deployment and contribution of PAs in medical and surgical specialties in English hospitals. PAs provided a flexible addition to the secondary care workforce without drawing from existing professions. Their utility in the hospital setting is unlikely to be completely realised without the appropriate level of regulation and authority to prescribe medicines and order ionising radiation within their scope of practice

    Sea surface pCO2 and O2 in the Southern Ocean during the austral fall, 2008

    Get PDF
    The physical and biological processes controlling surface mixed layer pCO2 and O2 were evaluated using in situ sensors mounted on a Lagrangian drifter deployed in the Atlantic sector of the Southern Ocean (∼50°S, ∼37°W) during the austral fall of 2008. The drifter was deployed three times during different phases of the study. The surface ocean pCO2 was always less than atmospheric pCO2 (−50.4 to −76.1 μatm), and the ocean was a net sink for CO2 with fluxes averaging between 16.2 and 17.8 mmol C m−2 d−1. Vertical entrainment was the dominant process controlling mixed layer CO2, with fluxes that were 1.8 to 2.2 times greater than the gas exchange fluxes during the first two drifter deployments, and was 1.7 times greater during the third deployment. In contrast, during the first two deployments the surface mixed layer was always a source of O2 to the atmosphere, and air-sea gas exchange was the dominant process occurring, with fluxes that were 2.0 to 4.1 times greater than the vertical entrainment flux. During the third deployment O2 was near saturation the entire deployment and was a small source of O2 to the atmosphere. Net community production (NCP) was low during this study, with mean fluxes of 3.2 to 6.4 mmol C m−2 d−1 during the first deployment and nondetectable (within uncertainty) in the third. During the second deployment the NCP was not separable from lateral advection. Overall, this study indicates that in the early fall the area is a significant sink for atmospheric CO2

    Comparison of a DNA Hybridization Probe and ELISA for the Detection of \u3ci\u3eClavibacter michiganensis\u3c/i\u3e subsp. \u3ci\u3esepedonicus\u3c/i\u3e in Field-Grown Potatoes

    Get PDF
    Clavibacter michiganensis subsp. sepedonicus, the causal agent of bacterial ring rot, was detected in field-grown potatoes using a 1.078-kb repeated C. m. sepedonicus sequence as a probe in DNA hybridizations. Stem and petiole samples from susceptible and tolerant cultivars (Russet Burbank and Belrus, respectively), inoculated with 10 mM phosphate buffer (pH 7.2) or 102 or 109 cfu of either an aggressive or a less aggressive C. m. sepedonicus strain, were processed by directly blotting cut tissue sections on nylon membranes, macerating frozen tissues, and applying xylem fluid collected by centrifugation to nylon membranes (stems only). The efficiency of detection was significantly influenced by sampling date, plant part, inoculum dose, and cultivar. The probe was compared with an enzyme-linked immunosorbent assay (ELISA) and showed 95-100% agreement when underground Russet Burbank stems inoculated with 109 cfu of aggressive C. m. sepedonicus strain SS43 were directly blotted. Although overall detection rates with stem sections were higher for ELISA (18.4% with ELISA vs. 11.3% with direct blotting), a high rate of false positives (53.9%) occurred with petiole tissues at 90 days after planting when ELISA was used, whereas none occurred with DNA hybridizations

    Comparing physician associates and foundation year two doctors-in-training undertaking emergency medicine consultations in England: a mixed-methods study of processes and outcomes.

    Get PDF
    OBJECTIVES: To compare the contribution of physician associates to the processes and outcomes of emergency medicine consultations with that of foundation year two doctors-in-training. DESIGN: Mixed-methods study: retrospective chart review using 4 months' anonymised clinical record data of all patients seen by physician associates or foundation year two doctors-in-training in 2016; review of a subsample of 40 records for clinical adequacy; semi-structured interviews with staff and patients; observations of physician associates. SETTING: Three emergency departments in England. PARTICIPANTS: The records of 8816 patients attended by 6 physician associates and 40 foundation year two doctors-in-training; of these n=3197 had the primary outcome recorded (n=1129 physician associates, n=2068 doctor); 14 clinicians and managers and 6 patients or relatives for interview; 5 physician associates for observation. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was unplanned re-attendance at the same emergency department within 7 days. SECONDARY OUTCOMES: consultation processes, clinical adequacy of care, and staff and patient experience. RESULTS: Re-attendances within 7 days (n=194 (6.1%)) showed no difference between physician associates and foundation year two doctors-in-training (OR 0.87, 95% CI 0.61 to 1.24, p=0.437). If seen by a physician associate, patients were more likely receive an X-ray investigation (OR 2.10, 95% CI 1.72 to 4.24), p<0.001), after adjustment for patient characteristics, triage severity of condition and statistically significant clinician intraclass correlation. Clinical reviewers found almost all patients' charts clinically adequate. Physician associates were evaluated as assessing patients in a similar way to foundation year two doctors-in-training and providing continuity in the team. Patients were positive about the care they had received from a physician associate, but had poor understanding of the role. CONCLUSIONS: Physician associates in emergency departments in England treated patients with a range of conditions safely, and at a similar level to foundation year two doctors-in-training, providing clinical operational efficiencies

    Exocyclic Carbons Adjacent to the N6 of Adenine are Targets for Oxidation by the Escherichia coli Adaptive Response Protein AlkB

    Get PDF
    The DNA and RNA repair protein AlkB removes alkyl groups from nucleic acids by a unique iron- and α-ketoglutarate-dependent oxidation strategy. When alkylated adenines are used as AlkB targets, earlier work suggests that the initial target of oxidation can be the alkyl carbon adjacent to N1. Such may be the case with ethano-adenine (EA), a DNA adduct formed by an important anticancer drug, BCNU, whereby an initial oxidation would occur at the carbon adjacent to N1. In a previous study, several intermediates were observed suggesting a pathway involving adduct restructuring to a form that would not hinder replication, which would match biological data showing that AlkB almost completely reverses EA toxicity in vivo. The present study uses more sensitive spectroscopic methodology to reveal the complete conversion of EA to adenine; the nature of observed additional putative intermediates indicates that AlkB conducts a second oxidation event in order to release the two-carbon unit completely. The second oxidation event occurs at the exocyclic carbon adjacent to the N[superscript 6] atom of adenine. The observation of oxidation of a carbon at N[superscript 6] in EA prompted us to evaluate N[superscript 6]-methyladenine (m6A), an important epigenetic signal for DNA replication and many other cellular processes, as an AlkB substrate in DNA. Here we show that m6A is indeed a substrate for AlkB and that it is converted to adenine via its 6-hydroxymethyl derivative. The observation that AlkB can demethylate m6A in vitro suggests a role for AlkB in regulation of important cellular functions in vivo.National Institutes of Health (U.S.) (Grant number CA080024)National Institutes of Health (U.S.) (Grant number CA26731)National Institutes of Health (U.S.) (Grant number ES02109

    Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions

    Get PDF
    GeMn/Ge epitaxial 'superlattices' grown by molecular beam epitaxy with different growth conditions have been systematically investigated by transmission electron microscopy. It is revealed that periodic arrays of GeMn nanodots can be formed on Ge and GaAs substrates at low temperature (approximately 70°C) due to the matched lattice constants of Ge (5.656 Å) and GaAs (5.653 Å), while a periodic Ge/GeMn superlattice grown on Si showed disordered GeMn nanodots with a large amount of stacking faults, which can be explained by the fact that Ge and Si have a large lattice mismatch. Moreover, by varying growth conditions, the GeMn/Ge superlattices can be manipulated from having disordered GeMn nanodots to ordered coherent nanodots and then to ordered nanocolumns

    Geometric and Electronic Structures of the NiI and Methyl−NiIII Intermediates of Methyl-Coenzyme M Reductase†

    Get PDF
    ABSTRACT: Methyl-coenzyme M reductase (MCR) catalyzes the terminal step in the formation of biological methane from methyl-coenzyme M (Me-SCoM) and coenzyme B (CoBSH). The active site in MCR contains a Ni-F430 cofactor, which can exist in different oxidation states. The catalytic mechanism of methane formation has remained elusive despite intense spectroscopic and theoretical investigations. On the basis of spectroscopic and crystallographic data, the first step of the mechanism is proposed to involve a nucleophilic attack of the NiI active state (MCRred1) on Me-SCoM to form a NiIII-methyl intermediate, while computational studies indicate that the first step involves the attack of NiI on the sulfur of Me-SCoM, forming a CH3 radical and a NiII-thiolate species. In this study, a combination of Ni K-edge X-ray absorption spectroscopic (XAS) studies and density functional theory (DFT) calculations have been performed on the NiI (MCRred1), NiII (MCRred1-silent), and NiIII-methyl (MCRMe) states of MCR to elucidate the geometric and electronic structures of the different redox states. Ni K-edge EXAFS data are used to reveal a five-coordinate active site with an open upper axial coordination site in MCRred1. Ni K-pre-edge and EXAFS data and time-dependent DFT calculations unambiguously demonstrate the presence of a long Ni-C bond (∼2.04 Å) in the NiIII-methyl state of MCR. The formation and stability of this species support mechanism I, and the Ni-C bond length suggests a homolytic cleavage of the NiIII-methyl bon
    corecore