704 research outputs found

    Source parameters of the 23 April 1992 M 6.1 Joshua Tree, California, earthquake and its aftershocks: Empirical Green's function analysis of GEOS and TERRAscope data

    Get PDF
    Source parameters of the M 6.1 23 April 1992 Joshua Tree mainshock and 86 M 1.8 to 4.9 aftershocks are determined using an empirical Green's function methodology. For the aftershocks, deconvolved P- and S-wave spectra are calculated for 126 pairs of closely spaced events recorded on portable GEOS stations; S-wave spectra from the two horizontal components are averaged. The deconvolved spectra are fit by a ratio of omega-square source models, yielding an optimal (least-squares) corner frequency for both the large and the small event in each pair. We find no resolved difference between the inferred P- and S-wave corner frequencies. Using the standard Brune model for stress drop, we also find no resolved nonconstant scaling of stress drop with moment, although we also conclude that detailed scaling systematics would be difficult to resolve. In particular, a weak increase of stress drop with moment over a limited moment/magnitude cannot be ruled out. For magnitudes smaller than M 3 to 3.5, the inferred stress-drop values will be limited by the maximum observable corner frequency value of 60 Hz. For the mainshock, source-time functions are obtained from mainshock recordings at three TERRAscope stations (PFO, PAS, and GSC) using an M 4.3 foreshock as an empirical Green's function. The results indicate a fairly simple, single-pulse source-time function, with clear south-to-north directivity and an inferred rupture radius of 5 to 6 km. The deconvolved source-time functions are inverted to obtain a finite-rupture model that gives a robust estimate of rupture dimension. Early aftershocks are found to lie along the perimeters of regions with high mainshock slip. The inferred mainshock stress-drop value, 56 bars, is within the range determined for the aftershocks. Our derived mainshock source spectra do not show resolvable deviation from the omega-square model

    Source Analysis of the Crandall Canyon, Utah, Mine Collapse

    Full text link

    Regional Analysis of Lg Attenuation: Comparison of 1D Methods in Northern California and Application to the Yellow Sea / Korean Peninsula

    Get PDF
    The measurement of regional attenuation Q{sup -1} can produce method dependent results. The discrepancies among methods are due to differing parameterizations (e.g., geometrical spreading rates), employed datasets (e.g., choice of path lengths and sources), and methodologies themselves (e.g., measurement in the frequency or time domain). We apply the coda normalization (CN), two-station (TS), reverse two-station (RTS), source-pair/receiver-pair (SPRP), and the new coda-source normalization (CS) methods to measure Q of the regional phase, Lg (Q{sub Lg}), and its power-law dependence on frequency of the form Q{sub 0}f{sup {eta}} with controlled parameterization in the well-studied region of northern California using a high-quality dataset from the Berkeley Digital Seismic Network. We test the sensitivity of each method to changes in geometrical spreading, Lg frequency bandwidth, the distance range of data, and the Lg measurement window. For a given method, there are significant differences in the power-law parameters, Q{sub 0} and {eta}, due to perturbations in the parameterization when evaluated using a conservative pairwise comparison. The CN method is affected most by changes in the distance range, which is most probably due to its fixed coda measurement window. Since, the CS method is best used to calculate the total path attenuation, it is very sensitive to the geometrical spreading assumption. The TS method is most sensitive to the frequency bandwidth, which may be due to its incomplete extraction of the site term. The RTS method is insensitive to parameterization choice, whereas the SPRP method as implemented here in the time-domain for a single path has great error in the power-law model parameters and {eta} is greatly affected by changes in the method parameterization. When presenting results for a given method it is best to calculate Q{sub 0}f{sup {eta}} for multiple parameterizations using some a priori distribution. We also investigate the difference in power-law Q calculated among the methods by considering only an approximately homogeneous subset of our data. All methods return similar power-law parameters, though the 95% confidence region is large. We adapt the CS method to calculate Q{sub Lg} tomography in northern California. Preliminary results show that by correcting for the source, tomography with the CS method may produce better resolved attenuation structure

    Studies of modern Italian dog populations reveal multiple patterns for domestic breed evolution

    Get PDF
    Through thousands of years of breeding and strong human selection, the dog (Canis lupus familiaris) exists today within hundreds of closed populations throughout the world, each with defined phenotypes. A singular geographic region with broad diversity in dog breeds presents an interesting opportunity to observe potential mechanisms of breed formation. Italy claims 14 internationally recognized dog breeds, with numerous additional local varieties. To determine the relationship among Italian dog populations, we integrated genetic data from 263 dogs representing 23 closed dog populations from Italy, seven Apennine gray wolves, and an established dataset of 161 globally recognized dog breeds, applying multiple genetic methods to characterize the modes by which breeds are formed within a single geographic region. Our consideration of each of five genetic analyses reveals a series of development events that mirror historical modes of breed formation, but with variations unique to the codevelopment of early dog and human populations. Using 142,840 genome-wide SNPs and a dataset of 1,609 canines, representing 182 breeds and 16 wild canids, we identified breed development routes for the Italian breeds that included divergence from common populations for a specific purpose, admixture of regional stock with that from other regions, and isolated selection of local stock with specific attributes

    Genome\u2011wide diversity and runs of homozygosity in the \u201cBraque Fran\ue7ais, type Pyr\ue9n\ue9es\u201d dog breed

    Get PDF
    Objective: Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es is a French hunting-dog breed whose origin is traced back to old pointing gun-dogs used to assist hunters in finding and retrieving game. This breed is popular in France, but seldom seen elsewhere. Despite the ancient background, the literature on its genetic characterization is surprisingly scarce. A recent study looked into the demography and inbreeding using pedigree records, but there is yet no report on the use of molecular markers in this breed. The aim of this work was to genotype a population of Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es dogs with the high-density SNP array to study the genomic diversity of the breed. Results: The average observed (HO) and expected (HE) heterozygosity were 0.371 (\uc2\ub1 0.142) and 0.359 (\uc2\ub1 0.124). Effective population size (NE) was 27.5635 runs of homozygosity (ROH) were identified with average length of 2.16 MB. A ROH shared by 75% of the dogs was detected at the beginning of chromosome 22. Inbreeding coefficients from marker genotypes were in the range FIS= [- 0.127, 0.172]. Inbreeding estimated from ROH (FROH) had mean 0.112 (\uc2\ub1 0.023), with range [0.0526, 0.225]. These results show that the Braque Fran\uc3\ua7ais, type Pyr\uc3\ua9n\uc3\ua9es breed is a relatively inbred population, but with still sufficient genetic variability for conservation and genetic improvement
    • …
    corecore