1,025 research outputs found
Optimal Taylor-Couette flow: direct numerical simulations
We numerically simulate turbulent Taylor-Couette flow for independently
rotating inner and outer cylinders, focusing on the analogy with turbulent
Rayleigh-B\'enard flow. Reynolds numbers of and
of the inner and outer cylinders, respectively, are
reached, corresponding to Taylor numbers Ta up to . Effective scaling
laws for the torque and other system responses are found. Recent experiments
with the Twente turbulent Taylor-Couette () setup and with a similar
facility in Maryland at very high Reynolds numbers have revealed an optimum
transport at a certain non-zero rotation rate ratio
of about . For large enough in the numerically
accessible range we also find such an optimum transport at non-zero
counter-rotation. The position of this maximum is found to shift with the
driving, reaching a maximum of for . An
explanation for this shift is elucidated, consistent with the experimental
result that becomes approximately independent of the driving strength
for large enough Reynolds numbers. We furthermore numerically calculate the
angular velocity profiles and visualize the different flow structures for the
various regimes. By writing the equations in a frame co-rotating with the outer
cylinder a link is found between the local angular velocity profiles and the
global transport quantities.Comment: Under consideration for publication in JFM, 31 pages, 25 figure
Von Neumann Regular Cellular Automata
For any group and any set , a cellular automaton (CA) is a
transformation of the configuration space defined via a finite memory set
and a local function. Let be the monoid of all CA over .
In this paper, we investigate a generalisation of the inverse of a CA from the
semigroup-theoretic perspective. An element is von
Neumann regular (or simply regular) if there exists
such that and , where is the composition of functions. Such an
element is called a generalised inverse of . The monoid
itself is regular if all its elements are regular. We
establish that is regular if and only if
or , and we characterise all regular elements in
when and are both finite. Furthermore, we study
regular linear CA when is a vector space over a field ; in
particular, we show that every regular linear CA is invertible when is
torsion-free elementary amenable (e.g. when ) and , and that every linear CA is regular when
is finite-dimensional and is locally finite with for all .Comment: 10 pages. Theorem 5 corrected from previous versions, in A.
Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata
and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer,
201
Dynamics and stability of vortex-antivortex fronts in type II superconductors
The dynamics of vortices in type II superconductors exhibit a variety of
patterns whose origin is poorly understood. This is partly due to the
nonlinearity of the vortex mobility which gives rise to singular behavior in
the vortex densities. Such singular behavior complicates the application of
standard linear stability analysis. In this paper, as a first step towards
dealing with these dynamical phenomena, we analyze the dynamical stability of a
front between vortices and antivortices. In particular we focus on the question
of whether an instability of the vortex front can occur in the absence of a
coupling to the temperature. Borrowing ideas developed for singular bacterial
growth fronts, we perform an explicit linear stability analysis which shows
that, for sufficiently large front velocities and in the absence of coupling to
the temperature, such vortex fronts are stable even in the presence of in-plane
anisotropy. This result differs from previous conclusions drawn on the basis of
approximate calculations for stationary fronts. As our method extends to more
complicated models, which could include coupling to the temperature or to other
fields, it provides the basis for a more systematic stability analysis of
nonlinear vortex front dynamics.Comment: 13 pages, 8 figure
The period of a classical oscillator
We develop a simple method to obtain approximate analytical expressions for
the period of a particle moving in a given potential. The method is inspired to
the Linear Delta Expansion (LDE) and it is applied to a large class of
potentials. Precise formulas for the period are obtained.Comment: 5 pages, 4 figure
A pulsed atomic soliton laser
It is shown that simultaneously changing the scattering length of an
elongated, harmonically trapped Bose-Einstein condensate from positive to
negative and inverting the axial portion of the trap, so that it becomes
expulsive, results in a train of self-coherent solitonic pulses. Each pulse is
itself a non-dispersive attractive Bose-Einstein condensate that rapidly
self-cools. The axial trap functions as a waveguide. The solitons can be made
robustly stable with the right choice of trap geometry, number of atoms, and
interaction strength. Theoretical and numerical evidence suggests that such a
pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure
Evolution of a barotropic shear layer into elliptical vortices
When a barotropic shear layer becomes unstable, it produces the well known
Kelvin-Helmholtz instability (KH). The non-linear manifestation of KH is
usually in the form of spiral billows. However, a piecewise linear shear layer
produces a different type of KH characterized by elliptical vortices of
constant vorticity connected via thin braids. Using direct numerical simulation
and contour dynamics, we show that the interaction between two
counter-propagating vorticity waves is solely responsible for this KH
formation. We investigate the oscillation of the vorticity wave amplitude, the
rotation and nutation of the elliptical vortex, and straining of the braids.
Our analysis also provides possible explanation behind the formation and
evolution of elliptical vortices appearing in geophysical and astrophysical
flows, e.g. meddies, Stratospheric polar vortices, Jovian vortices, Neptune's
Great Dark Spot and coherent vortices in the wind belts of Uranus.Comment: 7 pages, 4 figures, Accepted in Physical Review
Solitary Wave Interactions In Dispersive Equations Using Manton's Approach
We generalize the approach first proposed by Manton [Nuc. Phys. B {\bf 150},
397 (1979)] to compute solitary wave interactions in translationally invariant,
dispersive equations that support such localized solutions. The approach is
illustrated using as examples solitons in the Korteweg-de Vries equation,
standing waves in the nonlinear Schr{\"o}dinger equation and kinks as well as
breathers of the sine-Gordon equation.Comment: 5 pages, 4 figures, slightly modified version to appear in Phys. Rev.
Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow
Linear stability and the non-modal transient energy growth in compressible
plane Couette flow are investigated for two prototype mean flows: (a) the {\it
uniform shear} flow with constant viscosity, and (b) the {\it non-uniform
shear} flow with {\it stratified} viscosity. Both mean flows are linearly
unstable for a range of supersonic Mach numbers (). For a given , the
critical Reynolds number () is significantly smaller for the uniform shear
flow than its non-uniform shear counterpart. An analysis of perturbation energy
reveals that the instability is primarily caused by an excess transfer of
energy from mean-flow to perturbations. It is shown that the energy-transfer
from mean-flow occurs close to the moving top-wall for ``mode I'' instability,
whereas it occurs in the bulk of the flow domain for ``mode II''. For the
non-modal analysis, it is shown that the maximum amplification of perturbation
energy, , is significantly larger for the uniform shear case compared
to its non-uniform counterpart. For , the linear stability operator
can be partitioned into , and the
-dependent operator is shown to have a negligibly small
contribution to perturbation energy which is responsible for the validity of
the well-known quadratic-scaling law in uniform shear flow: . A reduced inviscid model has been shown to capture all salient
features of transient energy growth of full viscous problem. For both modal and
non-modal instability, it is shown that the {\it viscosity-stratification} of
the underlying mean flow would lead to a delayed transition in compressible
Couette flow
Ultra-discrete Optimal Velocity Model: a Cellular-Automaton Model for Traffic Flow and Linear Instability of High-Flux Traffic
In this paper, we propose the ultra-discrete optimal velocity model, a
cellular-automaton model for traffic flow, by applying the ultra-discrete
method for the optimal velocity model. The optimal velocity model, defined by a
differential equation, is one of the most important models; in particular, it
successfully reproduces the instability of high-flux traffic. It is often
pointed out that there is a close relation between the optimal velocity model
and the mKdV equation, a soliton equation. Meanwhile, the ultra-discrete method
enables one to reduce soliton equations to cellular automata which inherit the
solitonic nature, such as an infinite number of conservation laws, and soliton
solutions. We find that the theory of soliton equations is available for
generic differential equations, and the simulation results reveal that the
model obtained reproduces both absolutely unstable and convectively unstable
flows as well as the optimal velocity model.Comment: 9 pages, 6 figure
- …
