1,365 research outputs found

    Note on Signature Change and Colombeau Theory

    Get PDF
    Recent work alludes to various `controversies' associated with signature change in general relativity. As we have argued previously, these are in fact disagreements about the (often unstated) assumptions underlying various possible approaches. The choice between approaches remains open.Comment: REVTex, 3 pages; to appear in GR

    The Effect of Negative-Energy Shells on the Schwarzschild Black Hole

    Get PDF
    We construct Penrose diagrams for Schwarzschild spacetimes joined by massless shells of matter, in the process correcting minor flaws in the similar diagrams drawn by Dray and 't Hooft, and confirming their result that such shells generate a horizon shift. We then consider shells with negative energy density, showing that the horizon shift in this case allows for travel between the heretofore causally separated exterior regions of the Schwarzschild geometry. These drawing techniques are then used to investigate the properties of successive shells, joining multiple Schwarzschild regions. Again, the presence of negative-energy shells leads to a causal connection between the exterior regions, even in (some) cases with two successive shells of equal but opposite total energy.Comment: 12 pages, 10 figure

    Parametric Manifolds II: Intrinsic Approach

    Full text link
    A parametric manifold is a manifold on which all tensor fields depend on an additional parameter, such as time, together with a parametric structure, namely a given (parametric) 1-form field. Such a manifold admits natural generalizations of Lie differentiation, exterior differentiation, and covariant differentiation, all based on a nonstandard action of vector fields on functions. There is a new geometric object, called the deficiency, which behaves much like torsion, and which measures whether a parametric manifold can be viewed as a 1-parameter family of orthogonal hypersurfaces.Comment: Plain TeX, 13 pages, no figure

    Failure of Standard Conservation Laws at a Classical Change of Signature

    Full text link
    The Divergence Theorem as usually stated cannot be applied across a change of signature unless it is re-expressed to allow for a finite source term on the signature change surface. Consequently all conservation laws must also be `modified', and therefore insistence on conservation of matter across such a surface cannot be physically justified. The Darmois junction conditions normally ensure conservation of matter via Israel's identities for the jump in the energy-momentum density, but not when the signature changes. Modified identities are derived for this jump when a signature change occurs, and the resulting surface effects in the conservation laws are calculated. In general, physical vector fields experience a jump in at least one component, and a source term may therefore appear in the corresponding conservation law. Thus current is also not conserved. These surface effects are a consequence of the change in the character of physical law. The only way to recover standard conservation laws is to impose restrictions that no realistic cosmological model can satisfy.Comment: 15pp, figures available on request from Charles Hellaby at [email protected]

    Gravity and Signature Change

    Get PDF
    The use of proper ``time'' to describe classical ``spacetimes'' which contain both Euclidean and Lorentzian regions permits the introduction of smooth (generalized) orthonormal frames. This remarkable fact permits one to describe both a variational treatment of Einstein's equations and distribution theory using straightforward generalizations of the standard treatments for constant signature.Comment: Plain TeX, 6 pages; to appear in GR

    The symplectic origin of conformal and Minkowski superspaces

    Get PDF
    Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in d=3,4,6d=3,4,6 and 1010 dimensions is also deeply related to the normed division algebras. In this paper we want to show the link between the conformal group and certain types of symplectic transformations over division algebras. Inspired by this observation we then propose a new\,realization of the real form of the 4 dimensional conformal and Minkowski superspaces we obtain, respectively, as a Lagrangian supermanifold over the twistor superspace C41\mathbb{C}^{4|1} and a big cell inside it. The beauty of this approach is that it naturally generalizes to the 6 dimensional case (and possibly also to the 10 dimensional one) thus providing an elegant and uniform characterization of the conformal superspaces.Comment: 15 pages, references added, minor change

    Reply Comment: Comparison of Approaches to Classical Signature Change

    Full text link
    We contrast the two approaches to ``classical" signature change used by Hayward with the one used by us (Hellaby and Dray). There is (as yet) no rigorous derivation of appropriate distributional field equations. Hayward's distributional approach is based on a postulated modified form of the field equations. We make an alternative postulate. We point out an important difference between two possible philosophies of signature change --- ours is strictly classical, while Hayward's Lagrangian approach adopts what amounts to an imaginary proper ``time" on one side of the signature change, as is explicitly done in quantum cosmology. We also explain why we chose to use the Darmois-Israel type junction conditions, rather than the Lichnerowicz type junction conditions favoured by Hayward. We show that the difference in results is entirely explained by the difference in philosophy (imaginary versus real Euclidean ``time"), and not by the difference in approach to junction conditions (Lichnerowicz with specific coordinates versus Darmois with general coordinates).Comment: 10 pages, latex, no figures. Replying to - "Comment on `Failure of Standard Conservation Laws at a Classical Change of Signature'", S.A. Hayward, Phys. Rev. D52, 7331-7332 (1995) (gr-qc/9606045

    Chemical Self-Enrichment of HII Regions by the Wolf-Rayet Phase of an 85 Msun star

    Full text link
    It is clear from stellar evolution and from observations of WR stars that massive stars are releasing metal-enriched gas through their stellar winds in the Wolf-Rayet phase. Although HII region spectra serve as diagnostics to determine the present-day chemical composition of the interstellar medium, it is far from being understood to what extent the HII gas is already contaminated by chemically processed stellar wind. Therefore, we analyzed our models of radiative and wind bubbles of an isolated 85 Msun star with solar metallicity (Kr\"oger et al. 2006) with respect to the chemical enrichment of the circumstellar HII region. Plausibly, the hot stellar wind bubble (SWB) is enriched with 14N during the WN phase and even much higher with 12C and 16O during the WC phase of the star. During the short period that the 85 Msun star spends in the WC stage enriched SWB material mixes with warm HII gas of solar abundances and thus enhances the metallicity in the HII region. However, at the end of the stellar lifetime the mass ratios of the traced elements N and O in the warm ionized gas are insignificantly higher than solar, whereas an enrichment of 22 % above solar is found for C. Important issues from the presented study comprise a steeper radial gradient of C than O and a decreasing effect of self-enrichment for metal-poor galaxies.Comment: 5 pages, 3 figures, accepted for publication in A&A Letter

    A New Look at the Ashtekar-Magnon Energy Condition

    Get PDF
    In 1975, Ashtekar and Magnon showed that an energy condition selects a unique quantization procedure for certain observers in general, curved spacetimes. We generalize this result in two important ways, by eliminating the need to assume a particular form for the (quantum) Hamiltonian, and by considering the surprisingly nontrivial extension to nonminimal coupling.Comment: REVTeX, 10 page

    BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

    Get PDF
    We show that, contrary to recent criticism, our previous work yields a reasonable class of solutions for the massless scalar field in the presence of signature change.Comment: 11 pages, Plain Tex, no figure
    corecore