2,228 research outputs found

    Communicating optimization results

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 76-79).With global supply chains becoming increasingly complex, leading companies are embracing optimization software tools to help them structure and coordinate their supply chains. With an array of choices available, many organizations opt for one of the numerous off-the-shelf products. Others choose instead to create their own bespoke optimization tools. While this custom approach affords greater versatility than a commercially available product, it also presents significant challenges to both the creators and users of the tool in terms of complexity. It can often be time-consuming and difficult for the users of the tool to understand and verify the results that are generated. If a decision-maker has difficulty understanding or trusting the output of a model, then the value of the tool is seriously diminished. This paper examines the challenges between the creators, or operational research engineers, and the end-users when deploying and executing complex optimization software in supply chain management. We examine the field of optimization modeling, communication methods involved, and relevant data visualization techniques. Then, we survey a group of users from our sponsoring company to gain insight to their experience using their tool. The general responses and associated crosstab analysis reveals that training and visualization are areas that have potential to improve the user's understanding of the tool, which in turn would lead to better communication between the end-users and the experts who build and maintain the tool. Finally, we present a section on current, cutting edge visualization techniques that can be adapted to influence the way a user visualizes the optimization results.by Drake Bailey and Daniel Skempton.M.Eng.in Logistic

    Detection of Close-In Extrasolar Giant Planets Using the Fourier-Kelvin Stellar Interferometer

    Full text link
    We evaluate the direct detection of extrasolar giant planets with a two-aperture nulling infrared interferometer, working at angles θ<λ/2B{\theta}<{\lambda}/2B, and using a new `ratio-of-two-wavelengths' technique. Simple arguments suggest that interferometric detection and characterization should be quite possible for planets much closer than the conventional inner working angle, or angular resolution limit. We show that the peak signal from a nulling infrared interferometer of baseline (40\lesssim 40 meters) will often occur `inside the null', and that the signal variations from path-difference fluctuations will cancel to first order in the ratio of two wavelengths. Using a new interferometer simulation code, we evaluate the detectability of all the known extrasolar planets as observed using this two-color method with the proposed {\it Fourier Kelvin Stellar Interferometer (FKSI)}. In its minimum configuration {\it FKSI} uses two 0.5-meter apertures on a 12.5-meter baseline, and a ±20\pm 20^{\circ} field-of-regard. We predict that 7\sim 7 known extrasolar planets are directly detectable using {\it FKSI}, with low-resolution spectroscopy (R20R \sim 20) being possible in the most favorable cases. Spaceborne direct detection of extrasolar giant planets is possible with 12\sim 12 meter baselines, and does not require the much longer baselines provided by formation flying.Comment: Accepted for publication in ApJ Letter

    The Equivalence Principle as a Stepping Stone from Special to General Relativity: A Socratic Dialog

    Full text link
    In this paper we show how the student can be led to an understanding of the connection between special relativity and general relativity by considering the time dilation effect of clocks placed on the surface of the Earth. This paper is written as a Socratic dialog between a lecturer Sam and a student Kim.Comment: 8 pages, 1 figure, uses the revtex4 documentclass. Submitted to the American Journal of Physics. Minor modification and corrections following referees' comment

    Atomic Modeling of Photoionization Fronts in Nitrogen Gas

    Full text link
    Photoionization fronts play a dominant role in many astrophysical environments, but remain difficult to achieve in a laboratory experiment. Recent papers have suggested that experiments using a nitrogen medium held at ten atmospheres of pressure that is irradiated by a source with a radiation temperature of TR_{\rm R}\sim 100 eV can produce viable photoionization fronts. We present a suite of one-dimensional numerical simulations using the \helios\ multi-material radiation hydrodynamics code that models these conditions and the formation of a photoionization front. We study the effects of varying the atomic kinetics and radiative transfer model on the hydrodynamics and ionization state of the nitrogen gas, finding that more sophisticated physics, in particular a multi-angle long characteristic radiative transfer model and a collisional-radiative atomics model, dramatically changes the atomic kinetic evolution of the gas. A photoionization front is identified by computing the ratios between the photoionization rate, the electron impact ionization rate, and the total recombination rate. We find that due to the increased electron temperatures found using more advanced physics that photoionization fronts are likely to form in our nominal model. We report results of several parameter studies. In one of these, the nitrogen pressure is fixed at ten atmospheres and varies the source radiation temperature while another fixes the temperature at 100 eV and varied the nitrogen pressure. Lower nitrogen pressures increase the likelihood of generating a photoionization front while varying the peak source temperature has little effect.Comment: 17 pages, 10 figures, accepted to physics of plasma

    Simulation of fluid flows during growth of organic crystals in microgravity

    Get PDF
    Several counter diffusion type crystal growth experiments were conducted in space. Improvements in crystal size and quality are attributed to reduced natural convection in the microgravity environment. One series of experiments called DMOS (Diffusive Mixing of Organic Solutions) was designed and conducted by researchers at the 3M Corporation and flown by NASA on the space shuttle. Since only limited information about the mixing process is available from the space experiments, a series of ground based experiments was conducted to further investigate the fluid dynamics within the DMOS crystal growth cell. Solutions with density differences in the range of 10 to the -7 to 10 to the -4 power g/cc were used to simulate microgravity conditions. The small density differences were obtained by mixing D2O and H2O. Methylene blue dye was used to enhance flow visualization. The extent of mixing was measured photometrically using the 662 nm absorbance peak of the dye. Results indicate that extensive mixing by natural convection can occur even under microgravity conditions. This is qualitatively consistent with results of a simple scaling analysis. Quantitave results are in close agreement with ongoing computational modeling analysis

    SXP214, an X-ray Pulsar in the Small Magellanic Cloud, Crossing the Circumstellar Disk of the Companion

    Get PDF
    Located in the Small Magellanic Cloud (SMC), SXP214 is an X-ray pulsar in a high mass X-ray binary system with a Be-star companion. A recent survey of the SMC under a Chandra X-ray Visionary program found the source in a transition when the X-ray flux was on a steady rise. The Lomb-Scargle periodogram revealed a pulse period of 211.49 +/- 0.42 s, which is significantly (>5sigma) shorter than the previous measurements with XMM-Newton and RXTE. This implies that the system has gone through sudden spin-up episodes recently. The pulse profile shows a sharp eclipse-like feature with a modulation amplitude of >95%. The linear rise of the observed X-ray luminosity from <~2x to 7x10^35 erg s^-1 is correlated with steady softening of the X-ray spectrum, which can be described by the changes in the local absorption from N_H ~ 10^24 to <~10^20 cm^-2 for an absorbed power-law model. The soft X-ray emission below 2 keV was absent in the early part of the observation when only the pulsating hard X-ray component was observed, whereas at later times both soft and hard X-ray components were observed pulsating. A likely explanation is that the neutron star was initially hidden in the circumstellar disk of the companion, and later came out of the disk with the accreted material that continued fueling the observed pulsation.Comment: 8 pages, 4 figures, 1 table, accepted for publication in Ap

    The atmospheres of the hot-Jupiters Kepler-5b and Kepler-6b observed during occultations with Warm-Spitzer and Kepler

    Get PDF
    This paper reports the detection and the measurements of occultations of the two transiting hot giant exoplanets Kepler-5b and Kepler-6b by their parent stars. The observations are obtained in the near infrared with Spitzer Space Telescope and at optical wavelengths by combining more than a year of Kepler photometry. The investigation consists of constraining the eccentricities of these systems and of obtaining broad band emergent spectra for individual planets. For both targets, the occultations are detected at 3 sigma level at each wavelength with mid-occultation times consistent with circular orbits. The brightness temperatures of these planets are deduced from the infrared observations and reach T=1930+/-100K and T=1660+/-120K for Kepler-5b and Kepler-6b respectively. We measure optical geometric albedos A_g in the Kepler bandpass and find A_g=0.12+/-0.04 for Kepler-5b and A_g=0.11+/-0.04 for Kepler-6b leading to an upper limit for the Bond albedo of A_B < 0.17 in both cases. The observations for both planets are best described by models for which most of the incident energy is redistributed on the dayside, with only less than 10% of the absorbed stellar flux redistributed to the night side of these planets. The data for Kepler-5b favor a model without a temperature inversion, whereas for Kepler-6b they do not allow distinguishing between models with and without inversion.Comment: 26 pages, 18 figures, 3 tables, submitted to Ap
    corecore