14 research outputs found

    Efficient Route for the Preparation of Composite Resin Incorporating Silver Nanoparticles with Enhanced Antibacterial Properties

    No full text
    An efficient and facile route for the immobilization of silver (Ag) nanoparticles (NPs) in anion exchange resin beads with different silver loading is proposed. In this method, BH4− ions were first introduced into chloride-form resin through an ion exchange process with Cl− ions, followed by in-situ chemical reduction of Ag+ ions at the surface of the resin to form metallic Ag nanoparticles. Morphology and structure of the resulting Ag-resin nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infra-red (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and thermogravimetry analysis (TGA). The results confirmed the presence of smaller diameter Ag NPs incorporated into the resin beads having an average diameter on the order of 10 nm with a few Ag NP clusters of 20–100 nm. The nanoparticles were homogeneously distributed throughout the resin. There were no dramatic increases in average particle sizes even at very high Ag loadings. The resin retained its structure and stability, allowing higher stability of immobilized AgNPs than the colloidal ones. The Ag-loaded resins made with 50 mM AgNO3 were tested for antibacterial activity in vitro against Escherichia coli (E. coli) as a model microbial contaminant in water. Results showed greater than 99% bacterial inhibition within 3 h of exposure. The resin form offers greater ease of handling, long-term storage at room temperature, reusability in repeated reactions, and reduces the risk of environmental contamination

    Molecular Orientation and Energy Transfer Dynamics of a Metal Oxide Bound Self-Assembled Trilayer

    No full text
    Self-assembly of molecular multilayers via metal ion linkages has become an important strategy for interfacial engineering of metalloid and metal oxide (MOx) substrates, with applications in numerous areas, including energy harvesting, catalysis, and chemical sensing. An important aspect for the rational design of these multilayers is knowledge of the molecular structure–function relationships. For example, in a multilayer composed of different chromophores in each layer, the molecular orientation of each layer, both relative to the adjacent layers and the substrate, influences the efficiency of vectorial energy and electron transfer. Here, we describe an approach using UV–vis attenuated total reflection (ATR) spectroscopy to determine the mean dipole tilt angle of chromophores in each layer in a metal ion-linked trilayer self-assembled on indium-tin oxide. To our knowledge, this is the first report demonstrating the measurement of the orientation of three different chromophores in a single assembly. The ATR approach allows the adsorption of each layer to be monitored in real-time, and any changes in the orientation of an underlying layer arising from the adsorption of an overlying layer can be detected. We also performed transient absorption spectroscopy to monitor interlayer energy transfer dynamics in order to relate structure to function. We found that near unity efficiency, sub-nanosecond energy transfer between the third and second layer was primarily dictated by the distance between the chromophores. Thus, in this case, the orientation had minimal impact at such proximity

    Influence of Al<sub>2</sub>O<sub>3</sub> Overlayers on Intermolecular Interactions between Metal Oxide Bound Molecules

    No full text
    Intermolecular interactions on inorganic substrates can have a critical impact on the electrochemical and photophysical properties of the materials and subsequent performance in hybrid electronics. Critical to the intentional formation or inhibition of these processes is controlling interactions between molecules on a surface. In this report, we investigated the impact of surface loading and atomic-layer-deposited Al2O3 overlayers on the intermolecular interactions of a ZrO2-bound anthracene derivative as probed by the photophysical properties of the interface. While surface loading density had no impact on the absorption spectra of the films, there was an increase in excimer features with surface loading as observed by both emission and transient absorption. The addition of ALD overlayers of Al2O3 resulted in a decrease in excimer formation, but the emission and transient absorption spectra were still dominated by excimer features. These results suggest that ALD may provide a post-surface loading means of influencing such intermolecular interactions

    Hollow Metal Halide Perovskite Nanocrystals with Efficient Blue Emissions

    No full text
    Metal halide perovskite nanocrystals (NCs) have emerged as a new generation light emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g. platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectral region. Despite remarkable advances in the field of metal halide perovskite NCs over the last few years, many nanostructures in inorganic NCs have yet been realized in metal halide perovskites and producing highly efficient blue emitting perovskite NCs remains challenging and of great interest. Here we report for the first time the discovery of highly efficient blue emitting cesium lead bromide perovskite (CsPbBr3) NCs with hollow structures. By facile solution processing of cesium lead bromide perovskite precursor solution containing additional ethylenediammonium bromide and sodium bromide, in-situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effects results in color tuning of CsPbBr3 NCs from green to blue with high PLQEs of up to 81 %.</div

    Designing Anatomy Teaching Spaces to Meet the Needs of Today’s Learner

    No full text
    There are three key aspects to anatomy pedagogy: the when, how much, and how. The relative importance of all three will vary to a certain extent depending on teaching methods, but all require an adequate learning environment. The design of this learning environment needs to take into consideration student learning, local culture, and assessment. Within this context as much attention should be given to the development of the informal and hidden curricula as with that of the formal curriculum. Ultimately, it is assessment and its milieu that will drive learning in order to assure matching student behavior. Here the authors provide a succinct, practical, and problem-oriented approach to the design of anatomy teaching spaces that addresses the needs of today’s anatomy student. The authors also include key design considerations as well as aspects of the design process, such as the provision for appropriate sensory stimulation, plumbing and electricity requirements, surface area per student, the attainment of learning objectives, catering for assessment, e-learning capabilities, and a dynamic environment that can be suitably reconfigured
    corecore