12,155 research outputs found
Some Pattern Recognition Challenges in Data-Intensive Astronomy
We review some of the recent developments and challenges posed by the data
analysis in modern digital sky surveys, which are representative of the
information-rich astronomy in the context of Virtual Observatory. Illustrative
examples include the problems of an automated star-galaxy classification in
complex and heterogeneous panoramic imaging data sets, and an automated,
iterative, dynamical classification of transient events detected in synoptic
sky surveys. These problems offer good opportunities for productive
collaborations between astronomers and applied computer scientists and
statisticians, and are representative of the kind of challenges now present in
all data-intensive fields. We discuss briefly some emergent types of scalable
scientific data analysis systems with a broad applicability.Comment: 8 pages, compressed pdf file, figures downgraded in quality in order
to match the arXiv size limi
The rationale for shared decision making in mental health care : a systematic review of academic discourse
Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region
Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated. An active region, predating the beginning of the campaign, repeatedly enters into our view at the same phase as it rotates from beyond the stellar limb. As a result, the abundances tend slightly, but consistently, to increase for high FIP elements (an inverse FIP effect) with phase. We estimate the abundance increase of high FIP elements in the active region to be of about 75% over the coronal mean. This observed fractionation of elements in an active region on time scales of days provides circumstantial clues regarding the element enrichment mechanism of non-flaring stellar coronae
The Effects of Turbulence on Three-Dimensional Magnetic Reconnection at the Magnetopause
Two- and three-dimensional particle-in-cell simulations of a recent encounter
of the Magnetospheric Multiscale Mission (MMS) with an electron diffusion
region at the magnetopause are presented. While the two-dimensional simulation
is laminar, turbulence develops at both the x-line and along the magnetic
separatrices in the three-dimensional simulation. The turbulence is strong
enough to make the magnetic field around the reconnection island chaotic and
produces both anomalous resistivity and anomalous viscosity. Each contribute
significantly to breaking the frozen-in condition in the electron diffusion
region. A surprise is that the crescent-shaped features in velocity space seen
both in MMS observations and in two-dimensional simulations survive, even in
the turbulent environment of the three-dimensional system. This suggests that
MMS's measurements of crescent distributions do not exclude the possibility
that turbulence plays an important role in magnetopause reconnection.Comment: Revised version accepted by GR
QED calculation of the n=1 and n=2 energy levels in He-like ions
We perform ab initio QED calculations of energy levels for the and
states of He-like ions with the nuclear charge in the range -100.
The complete set of two-electron QED corrections is evaluated to all orders in
the parameter \aZ. Uncalculated contributions to energy levels come through
orders \alpha^3 (\aZ)^2, \alpha^2 (\aZ)^7, and higher. The calculation
presented is the first treatment for excited states of He-like ions complete
through order \alpha^2 (\aZ)^4. A significant improvement in accuracy of
theoretical predictions is achieved, especially in the high- region.Comment: 23 pages, 5 figure
Turbulence in Three-Dimensional Simulations of Magnetopause Reconnection
We present detailed analysis of the turbulence observed in three-dimensional
particle-in-cell simulations of magnetic reconnection at the magnetopause. The
parameters are representative of an electron diffusion region encounter of the
Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop
around both the magnetic X line and separatrices, is electromagnetic in nature,
is characterized by a wave vector given by
with the electron Larmor radius,
and appears to have the ion pressure gradient as its source of free energy.
Taken together, these results suggest the instability is a variant of the lower
hybrid drift instability. The turbulence produces electric field fluctuations
in the out-of-plane direction (the direction of the reconnection electric
field) with an amplitude of around ~mV/m, which is much greater than
the reconnection electric field of around ~mV/m. Such large values of the
out-of-plane electric field have been identified in the MMS data. The
turbulence in the simulations controls the scale lengths of the density profile
and current layers in asymmetric reconnection, driving them closer to
than the or scalings seen in 2-D
reconnection simulations, and produces significant anomalous resistivity and
viscosity in the electron diffusion region.Comment: 11 pages, 10 figure
Two-scale structure of the electron dissipation region during collisionless magnetic reconnection
Particle in cell (PIC) simulations of collisionless magnetic reconnection are
presented that demonstrate that the electron dissipation region develops a
distinct two-scale structure along the outflow direction. The length of the
electron current layer is found to decrease with decreasing electron mass,
approaching the ion inertial length for a proton-electron plasma. A surprise,
however, is that the electrons form a high-velocity outflow jet that remains
decoupled from the magnetic field and extends large distances downstream from
the x-line. The rate of reconnection remains fast in very large systems,
independent of boundary conditions and the mass of electrons.Comment: Submitted to Physical Review Letters, 4 pages, 4 figure
Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause
We perform a theoretical and numerical study of anti-parallel 2D magnetic
reconnection with asymmetries in the density and reconnecting magnetic field
strength in addition to a bulk flow shear across the reconnection site in the
plane of the reconnecting fields, which commonly occurs at planetary
magnetospheres. We predict the speed at which an isolated X-line is convected
by the flow, the reconnection rate, and the critical flow speed at which
reconnection no longer takes place for arbitrary reconnecting magnetic field
strengths, densities, and upstream flow speeds, and confirm the results with
two-fluid numerical simulations. The predictions and simulation results counter
the prevailing model of reconnection at Earth's dayside magnetopause which says
reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath
flow, reconnection occurs but the X-line convects for magnetosheath flows
between the Alfven speed and double the Alfven speed, and reconnection does not
occur for magnetosheath flows greater than double the Alfven speed. We find
that X-line motion is governed by momentum conservation from the upstream
flows, which are weighted differently in asymmetric systems, so the X-line
convects for generic conditions including sub-Alfvenic upstream speeds. For the
reconnection rate, while the cutoff condition for symmetric reconnection is
that the difference in flows on the two sides of the reconnection site is twice
the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric
reconnection to be higher than twice the asymmetric form of the Alfven speed.
The results compare favorably with an observation of reconnection at Earth's
polar cusps during a period of northward interplanetary magnetic field, where
reconnection occurs despite the magnetosheath flow speed being more than twice
the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of
Geophysical Research - Space Physic
- …
