129 research outputs found
Perspectives on Interstellar Dust Inside and Outside of the Heliosphere
Measurements by dust detectors on interplanetary spacecraft appear to
indicate a substantial flux of interstellar particles with masses exceeding
10^{-12}gram. The reported abundance of these massive grains cannot be typical
of interstellar gas: it is incompatible with both interstellar elemental
abundances and the observed extinction properties of the interstellar dust
population. We discuss the likelihood that the Solar System is by chance
located near an unusual concentration of massive grains and conclude that this
is unlikely, unless dynamical processes in the ISM are responsible for such
concentrations. Radiation pressure might conceivably drive large grains into
"magnetic valleys". If the influx direction of interstellar gas and dust is
varying on a ~10 yr timescale, as suggested by some observations, this would
have dramatic implications for the small-scale structure of the interstellar
medium.Comment: 13 pages. To appear in Space Science Review
Grain Destruction in Interstellar Shocks
Interstellar shock waves can erode and destroy grains present in the shocked
gas, primarily as the result of sputtering and grain-grain collisions.
Uncertainties in current estimates of sputtering yields are reviewed. Results
are presented for the simple case of sputtering of fast grains being stopped in
cold gas. An upper limit is derived for sputtering of refractory grains in
C-type MHD shocks: shock speeds v_s \gtrsim 50 \kms are required for return
of more than 30\% of the silicate to the gas phase. Sputtering can also be
important for removing molecular ice mantles from grains in two-fluid MHD shock
waves in molecular gas. Recent estimates of refractory grain lifetimes against
destruction in shock waves are summarized, and the implications of these short
lifetimes are discussed.Comment: To appear in Shocks in Astrophysics, ed. T.J. Millar. Talk given at
conference Shocks in Astrophysics, Manchester, Jan. 1995. 13 pages with 6
figures: uuencoded compressed postscript. Also available as POPe-633 on
http://astro.princeton.edu/~library/prep.htm
Generalization of the coupled dipole method to periodic structures
We present a generalization of the coupled dipole method to the scattering of
light by arbitrary periodic structures. This new formulation of the coupled
dipole method relies on the same direct-space discretization scheme that is
widely used to study the scattering of light by finite objects. Therefore, all
the knowledge acquired previously for finite systems can be transposed to the
study of periodic structures.Comment: 5 pages, 2 figures, and 1 tabl
Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time
We present a model for structure formation, melting, and optical properties
of gold/DNA nanocomposites. These composites consist of a collection of gold
nanoparticles (of radius 50 nm or less) which are bound together by links made
up of DNA strands. In our structural model, the nanocomposite forms from a
series of Monte Carlo steps, each involving reaction-limited cluster-cluster
aggregation (RLCA) followed by dehybridization of the DNA links. These links
form with a probability which depends on temperature and particle
radius . The final structure depends on the number of monomers (i. e. gold
nanoparticles) , , and the relaxation time. At low temperature, the
model results in an RLCA cluster. But after a long enough relaxation time, the
nanocomposite reduces to a compact, non-fractal cluster. We calculate the
optical properties of the resulting aggregates using the Discrete Dipole
Approximation. Despite the restructuring, the melting transition (as seen in
the extinction coefficient at wavelength 520 nm) remains sharp, and the melting
temperature increases with increasing as found in our previous
percolation model. However, restructuring increases the corresponding link
fraction at melting to a value well above the percolation threshold. Our
calculated extinction cross section agrees qualitatively with experiments on
gold/DNA composites. It also shows a characteristic ``rebound effect,''
resulting from incomplete relaxation, which has also been seen in some
experiments. We discuss briefly how our results relate to a possible sol-gel
transition in these aggregates.Comment: 12 pages, 10 figure
Optical properties of dust
http://arxiv.org/abs/0808.4123Except in a few cases cosmic dust can be studied in situ or in terrestrial laboratories, essentially all of our information concerning the nature of cosmic dust depends upon its interaction with electromagnetic radiation. This chapter presents the theoretical basis for describing the optical properties of dust -- how it absorbs and scatters starlight and reradiates the absorbed energy at longer wavelengths.Partial support by a Chandra Theory program
and HST Theory Programs is gratefully acknowledged
Theory of Melting and the Optical Properties of Gold/DNA Nanocomposites
We describe a simple model for the melting and optical properties of a
DNA/gold nanoparticle aggregate. The optical properties at fixed wavelength
change dramatically at the melting transition, which is found to be higher and
narrower in temperature for larger particles, and much sharper than that of an
isolated DNA link. All these features are in agreement with available
experiments. The aggregate is modeled as a cluster of gold nanoparticles on a
periodic lattice connected by DNA bonds, and the extinction coefficient is
computed using the discrete dipole approximation. Melting takes place as an
increasing number of these bonds break with increasing temperature. The melting
temperature corresponds approximately to the bond percolation threshold.Comment: 5 pages, 4 figure. To be published in Phys. Rev.
Formation of Small-Scale Condensations in the Molecular Clouds via Thermal Instability
A systematic study of the linear thermal instability of a self-gravitating
magnetic molecular cloud is carried out for the case when the unperturbed
background is subject to local expansion or contraction. We consider the
ambipolar diffusion, or ion-neutral friction on the perturbed states. In this
way, we obtain a non-dimensional characteristic equation that reduces to the
prior characteristic equation in the non-gravitating stationary background. By
parametric manipulation of this characteristic equation, we conclude that there
are, not only oblate condensation forming solutions, but also prolate solutions
according to local expansion or contraction of the background. We obtain the
conditions for existence of the Field lengths that thermal instability in the
molecular clouds can occur. If these conditions establish, small-scale
condensations in the form of spherical, oblate, or prolate may be produced via
thermal instability.Comment: 16 page, accepted by Ap&S
Systematic effects in the extraction of the 'WMAP haze'
The extraction of a 'haze' from the WMAP microwave skymaps is based on
subtraction of known foregrounds, viz. free-free (bremsstrahlung), thermal dust
and synchrotron, each traced by other skymaps. While the 408 MHz all-sky survey
is used for the synchrotron template, the WMAP bands are at tens of GHz where
the spatial distribution of the radiating cosmic ray electrons ought to be
quite different because of the energy-dependence of their diffusion in the
Galaxy. The systematic uncertainty this introduces in the residual skymap is
comparable to the claimed haze and can, for certain source distributions, have
a very similar spectrum and latitudinal profile and even a somewhat similar
morphology. Hence caution must be exercised in interpreting the 'haze' as a
physical signature of, e.g., dark matter annihilation in the Galactic centre.Comment: 17 pages, 12 figures; improved diffusion model; extended discussion
of spectral index maps; clarifying comments, figures and references added; to
appear in JCA
SPIDER: Probing the Early Universe with a Suborbital Polarimeter
We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a
divergence-free polarization pattern ("B-modes") in the Cosmic Microwave
Background (CMB). In the inflationary scenario, the amplitude of this signal is
proportional to that of the primordial scalar perturbations through the
tensor-to-scalar ratio r. We show that the expected level of systematic error
in the SPIDER instrument is significantly below the amplitude of an interesting
cosmological signal with r=0.03. We present a scanning strategy that enables us
to minimize uncertainty in the reconstruction of the Stokes parameters used to
characterize the CMB, while accessing a relatively wide range of angular
scales. Evaluating the amplitude of the polarized Galactic emission in the
SPIDER field, we conclude that the polarized emission from interstellar dust is
as bright or brighter than the cosmological signal at all SPIDER frequencies
(90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the
"Southern Hole." We show that two ~20-day flights of the SPIDER instrument can
constrain the amplitude of the B-mode signal to r<0.03 (99% CL) even when
foreground contamination is taken into account. In the absence of foregrounds,
the same limit can be reached after one 20-day flight.Comment: 29 pages, 8 figures, 4 tables; v2: matches published version, flight
schedule updated, two typos fixed in Table 2, references and minor
clarifications added, results unchange
- …