271 research outputs found

    Living in an Irrational Society: Wealth Distribution with Correlations between Risk and Expected Profits

    Full text link
    Different models to study the wealth distribution in an artificial society have considered a transactional dynamics as the driving force. Those models include a risk aversion factor, but also a finite probability of favoring the poorer agent in a transaction. Here we study the case where the partners in the transaction have a previous knowledge of the winning probability and adjust their risk aversion taking this information into consideration. The results indicate that a relatively equalitarian society is obtained when the agents risk in direct proportion to their winning probabilities. However, it is the opposite case that delivers wealth distribution curves and Gini indices closer to empirical data. This indicates that, at least for this very simple model, either agents have no knowledge of their winning probabilities, either they exhibit an ``irrational'' behavior risking more than reasonable.Comment: 7 pages, 8 figure

    Statistical Mechanics of Money, Income, and Wealth: A Short Survey

    Full text link
    In this short paper, we overview and extend the results of our papers cond-mat/0001432, cond-mat/0008305, and cond-mat/0103544, where we use an analogy with statistical physics to describe probability distributions of money, income, and wealth in society. By making a detailed quantitative comparison with the available statistical data, we show that these distributions are described by simple exponential and power-law functions.Comment: 4 pages, 3 figures with 6 eps files, requires AIP proceedings style (enclosed). Submitted to the proceedings of the 7th Granada semina

    Consequences of increased longevity for wealth, fertility, and population growth

    Full text link
    We present, solve and numerically simulate a simple model that describes the consequences of increased longevity on fertility rates, population growth and the distribution of wealth in developed societies. We look at the consequences of the repeated use of life extension techniques and show that they represent a novel commodity whose introduction will profoundly influence key aspects of economy and society in general. In particular, we uncover two phases within our simplified model, labeled as 'mortal' and 'immortal'. Within the life extension scenario it is possible to have sustainable economic growth in a population of stable size, as a result of dynamical equilibrium between the two phases.Comment: 13 pages, 5 figures, uses elsart.cl

    Power Law of Customers' Expenditures in Convenience Stores

    Full text link
    In a convenience store chain, a tail of the cumulative density function of the expenditure of a person during a single shopping trip follows a power law with an exponent of -2.5. The exponent is independent of the location of the store, the shopper's age, the day of week, and the time of day.Comment: 9 pages, 5 figures. Accepted for publication in Journal of the Physical Society of Japan Vol.77No.

    Entropy and equilibrium state of free market models

    Full text link
    Many recent models of trade dynamics use the simple idea of wealth exchanges among economic agents in order to obtain a stable or equilibrium distribution of wealth among the agents. In particular, a plain analogy compares the wealth in a society with the energy in a physical system, and the trade between agents to the energy exchange between molecules during collisions. In physical systems, the energy exchange among molecules leads to a state of equipartition of the energy and to an equilibrium situation where the entropy is a maximum. On the other hand, in the majority of exchange models, the system converges to a very unequal condensed state, where one or a few agents concentrate all the wealth of the society while the wide majority of agents shares zero or almost zero fraction of the wealth. So, in those economic systems a minimum entropy state is attained. We propose here an analytical model where we investigate the effects of a particular class of economic exchanges that minimize the entropy. By solving the model we discuss the conditions that can drive the system to a state of minimum entropy, as well as the mechanisms to recover a kind of equipartition of wealth

    Gamma-distribution and wealth inequality

    Full text link
    We discuss the equivalence between kinetic wealth-exchange models, in which agents exchange wealth during trades, and mechanical models of particles, exchanging energy during collisions. The universality of the underlying dynamics is shown both through a variational approach based on the minimization of the Boltzmann entropy and a complementary microscopic analysis of the collision dynamics of molecules in a gas. In various relevant cases the equilibrium distribution is the same for all these models, namely a gamma-distribution with suitably defined temperature and number of dimensions. This in turn allows one to quantify the inequalities observed in the wealth distributions and suggests that their origin should be traced back to very general underlying mechanisms: for instance, it follows that the smaller the fraction of the relevant quantity (e.g. wealth or energy) that agents can exchange during an interaction, the closer the corresponding equilibrium distribution is to a fair distribution.Comment: Presented to the International Workshop and Conference on: Statistical Physics Approaches to Multi-disciplinary Problems, January 07-13, 2008, IIT Guwahati, Indi
    • …
    corecore