4,131 research outputs found

    Following Weyl on Quantum Mechanics: the contribution of Ettore Majorana

    Full text link
    After a quick historical account of the introduction of the group-theoretical description of Quantum Mechanics in terms of symmetries, as proposed by Weyl, we examine some unpublished papers by Ettore Majorana. Remarkable results achieved by him in frontier research topics as well as in physics teaching point out that the Italian physicist can be well considered as a follower of Weyl in his reformulation of Quantum Mechanics.Comment: LaTeX, 15 pages, 1 ps figur

    Ettore Majorana's course on Theoretical Physics: a recent discovery

    Full text link
    We analyze in some detail the course of Theoretical Physics held by Ettore Majorana at the University of Naples in 1938, just before his mysterious disappearance. In particular we present the recently discovered "Moreno Paper", where all the lecture notes are reported. Six of these lectures are not present in the collection of the original manuscripts conserved at the Domus Galilaeana in Pisa, consisting of only ten lectures.Comment: AMS-latex, 16 pages, 2 figure

    Maps for Electron Clouds: Application to LHC Conditioning

    Full text link
    In this communication we present a generalization of the map formalism, introduced in [1] and [2], to the analysis of electron flux at the chamber wall with particular reference to the exploration of LHC conditioning scenarios.Comment: 3 pages, 4 figure

    A 1.2V 10ÎŒW NPN-Based Temperature Sensor in 65nm CMOS with an inaccuracy of ±0.2°C (3s) from −70°C to 125°C

    Get PDF
    This paper describes a temperature sensor realized in a 65nm CMOS process with a batch-calibrated inaccuracy of ±0.5°C (3σ) and a trimmed inaccuracy of ±0.2°C (3σ) from –70°C to 125°C. This represents a 10-fold improvement in accuracy compared to other deep-submicron temperature sensors [1,2], and is comparable with that of state-of-the-art sensors implemented in larger-featuresize processes [3,4]. The sensor draws 8.3ÎŒA from a 1.2V supply and occupies an area of 0.1mm2, which is 45 times less than that of sensors with comparable accuracy [3,4]. These advances are enabled by the use of NPN transistors as sensing elements, the use of dynamic techniques i.e. correlated double sampling (CDS) and dynamic element matching (DEM), and a single room-temperature trim

    Magnetic fields generated by r-modes in accreting millisecond pulsars

    Get PDF
    In millisecond pulsars the existence of the Coriolis force allows the development of the so-called Rossby oscillations (r-modes) which are know to be unstable to emission of gravitational waves. These instabilities are mainly damped by the viscosity of the star or by the existence of a strong magnetic field. A fraction of the observed millisecond pulsars are known to be inside Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black hole) is accreting from a donor whose mass is smaller than 1 M⊙M_\odot. Here we show that the r-mode instabilities can generate strong toroidal magnetic fields by inducing differential rotation. In this way we also provide an alternative scenario for the origin of the magnetars.Comment: 6 pages, 3 figures, Proceedings conference "Theoretical Nuclear Physics", Cortona October 200

    A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes

    Get PDF
    A 65 nm CMOS 2.4 GHz wake-up receiver operating with low-accuracy frequency references has been realized. Robustness to frequency inaccuracy is achieved by employing non-coherent energy detection, broadband-IF heterodyne architecture and impulse-radio modulation. The radio dissipates 415 ¿W at 500 kb/s and achieves a sensitivity of -82 dBm with an energy efficiency of 830 pJ/bit.\u

    Efficacy of Two Common Methods of Application of Residual Insecticide for Controlling the Asian Tiger Mosquito, Aedes albopictus (Skuse), in Urban Areas

    Get PDF
    After its first introduction in the 1980's the Asian tiger mosquito, Aedes albopictus (Skuse), has spread throughout Southern Europe. Ae. albopictus is considered an epidemiologically important vector for the transmission of many viral pathogens such as the yellow fever virus, dengue fever and Chikungunya fever, as well as several filarial nematodes such as Dirofilaria immitis or D. repens. It is therefore crucial to develop measures to reduce the risks of disease transmission by controlling the vector populations. The aim of the study was to compare the efficacy of two application techniques (mist vs. stretcher sprayer) and two insecticides (Etox based on the nonester pyrethroid Etofenprox vs. Microsin based on the pyrethroid type II Cypermetrin) in controlling adult tiger mosquito populations in highly populated areas. To test the effect of the two treatments pre- and post-treatment human landing rate counts were conducted for two years. After one day from the treatment we observed a 100% population decrease in mosquito abundance with both application methods and both insecticides. However, seven and 14 days after the application the stretcher sprayer showed larger population reductions than the mist sprayer. No effect of insecticide type after one day and 14 days was found, while Etox caused slightly higher population reduction than Microsin after seven days. Emergency measures to locally reduce the vector populations should adopt adulticide treatments using stretcher sprayers. However, more research is still needed to evaluate the potential negative effects of adulticide applications on non-target organisms

    Enhancing the significance of gravitational wave bursts through signal classification

    Get PDF
    The quest to observe gravitational waves challenges our ability to discriminate signals from detector noise. This issue is especially relevant for transient gravitational waves searches with a robust eyes wide open approach, the so called all- sky burst searches. Here we show how signal classification methods inspired by broad astrophysical characteristics can be implemented in all-sky burst searches preserving their generality. In our case study, we apply a multivariate analyses based on artificial neural networks to classify waves emitted in compact binary coalescences. We enhance by orders of magnitude the significance of signals belonging to this broad astrophysical class against the noise background. Alternatively, at a given level of mis-classification of noise events, we can detect about 1/4 more of the total signal population. We also show that a more general strategy of signal classification can actually be performed, by testing the ability of artificial neural networks in discriminating different signal classes. The possible impact on future observations by the LIGO-Virgo network of detectors is discussed by analysing recoloured noise from previous LIGO-Virgo data with coherent WaveBurst, one of the flagship pipelines dedicated to all-sky searches for transient gravitational waves
    • 

    corecore