128 research outputs found

    Efficacy and safety of nilotinib as frontline treatment in elderly (> 65 years) chronic myeloid leukemia patients outside clinical trials

    Get PDF
    Here, we report real-world evidence on the safety and efficacy of nilotinib as a first-line treatment in elderly patients with chronic phase CML, treated in 18 Italian centers. Sixty patients aged > 65 years (median age 72 years (65-84)) were reported: 13 patients were older than 75 years. Comorbidities were recorded at baseline in 56/60 patients. At 3 months of treatment, all patients obtained complete hematological response (CHR), 43 (71.6%) an early molecular response (EMR), while 47 (78%) reached a complete cytogenetic response (CCyR). At last follow-up, 63.4% of patients still had a deep molecular response (MR4 or better), 21.6% reached MR3 as best response and 11.6% persisted without MR. Most patients (85%) started the treatment at the standard dose (300 mg BID), maintained at 3 months in 80% of patients and at 6 months in 89% of them. At the last median follow-up of 46.3 months, 15 patients discontinued definitively the treatment (8 due to side effects, 4 died for unrelated CML causes, 1 for failure, 2 were lost to follow-up). One patient entered in treatment-free remission. As to safety, 6 patients (10%) experienced cardiovascular events after a median time of 20.9 months from the start. Our data showed that nilotinib could be, as first-line treatment, effective and relatively safe even in elderly CML patients. In this setting, more data in the long term are needed about possible dose reduction to improve the tolerability, while maintaining the optimal molecular response

    Summary and Highlights of the SPARC-Reanalysis Intercomparison Project

    Get PDF
    The climate research community uses global atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere; they are a particularly powerful tool for studying phenomena that cannot be directly observed. Different reanalyses may give very different results for the same diagnostics. The Stratosphere troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare key diagnostics that are important for stratospheric processes and their tropospheric connections among available reanalyses. S-RIP has been identifying differences among reanalyses and their underlying causes, providing guidance on appropriate usage of reanalysis products in scientific studies (particularly those of relevance to SPARC), and contributing to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. S-RIP emphasizes diagnostics of the upper troposphere, stratosphere, and lower mesosphere. The draft S-RIP final report is expected to be completed in 2018. This poster gives a summary of the S-RIP project and presents highlights including results on the Brewer-Dobson circulation, stratosphere/troposphere dynamical coupling, the extra-tropical upper troposphere / lower stratosphere, the tropical tropopause layer, the quasi-biennial oscillation, lower stratospheric polar processing, and the upper stratosphere/lower mesosphere

    Mutational analysis of xenobiotic metabolizing genes (CYP1A1 and GSTP1) in sporadic head and neck cancer patients

    Get PDF
    CYP1A1 is the phase I enzyme that detoxifies the carcinogen or converts it into a more electrophilic form, metabolized by phase II enzymes like GSTP1. These detoxifying genes have been extensively studied in association with head and neck cancer (HNC) in different ethnic groups worldwide. The current study was aimed at screening genetic polymorphisms of genes CYP1A1 and GSTP1 in 388 Pakistani HNC patients and 150 cancer-free healthy controls, using PCR-SSCP. No already known variants of either gene were found, however a novel frameshift mutation due to insertion of T (g.2842_2843insT) was observed in the CYP1A1 gene. A statistically significant number (5.4%) of HNC cases, with the mean age of 51.75 (±15.7) years, presented this frameshift mutation in the conserved domain of CYP1A1. Another novel substitution mutation in was found in the GSTP1 gene, presenting TA instead of AG. The g.2848A > T polymorphism causes a leucine-to-leucine formation, whereas g.2849G > A causes alanine-to-threonine formation at amino acid positions 166 and 167, respectively. These exonic mutations were found in 9.5% of the HNC patients and in none of the controls. In addition, two intronic deletions of C (g.1074delC and g.1466delC) were also found in 11 patients with a mean age of 46.2 (±15.6) years. In conclusion, accumulation of mutations in genes CYP1A1 and GSTP1 appears to be associated with increased risk of developing HNC, suggesting that mutations in these genes may play a role in the etiology of head and neck cancer

    Immunization of mice with the nef gene from Human Immunodeficiency Virus type 1: Study of immunological memory and long-term toxicology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) regulatory protein, Nef, is an attractive vaccine target because it is involved in viral pathogenesis, is expressed early in the viral life cycle and harbors many T and B cell epitopes. Several clinical trials include gene-based vaccines encoding this protein. However, Nef has been shown to transform certain cell types <it>in vitro</it>. Based on these findings we performed a long-term toxicity and immunogenicity study of Nef, encoded either by Modified Vaccinia virus Ankara or by plasmid DNA. BALB/c mice were primed twice with either DNA or MVA encoding Nef and received a homologous or heterologous boost ten months later. In the meantime, the Nef-specific immune responses were monitored and at the time of sacrifice an extensive toxicological evaluation was performed, where presence of tumors and other pathological changes were assessed.</p> <p>Results</p> <p>The toxicological evaluation showed that immunization with MVAnef is safe and does not cause cellular transformation or other toxicity in somatic organs.</p> <p>Both DNAnef and MVAnef immunized animals developed potent Nef-specific cellular responses that declined to undetectable levels over time, and could readily be boosted after almost one year. This is of particular interest since it shows that plasmid DNA vaccine can also be used as a potent late booster of primed immune responses. We observed qualitative differences between the T cell responses induced by the two different vectors: DNA-encoded nef induced long-lasting CD8<sup>+ </sup>T cell memory responses, whereas MVA-encoded nef induced CD4<sup>+ </sup>T cell memory responses. In terms of the humoral immune responses, we show that two injections of MVAnef induce significant anti-Nef titers, while repeated injections of DNAnef do not. A single boost with MVAnef could enhance the antibody response following DNAnef prime to the same level as that observed in animals immunized repeatedly with MVAnef. We also demonstrate the possibility to boost HIV-1 Nef-specific immune responses using the MVAnef construct despite the presence of potent anti-vector immunity.</p> <p>Conclusion</p> <p>This study shows that the nef gene vectored by MVA does not induce malignancies or other adverse effects in mice. Further, we show that when the nef gene is delivered by plasmid or by a viral vector, it elicits potent and long-lasting immune responses and that these responses can be directed towards a CD4<sup>+ </sup>or a CD8<sup>+ </sup>T cell response depending on the choice of vector.</p

    Observational study of chronic myeloid leukemia italian patients who discontinued tyrosine kinase inhibitors in clinical practice

    Get PDF
    It is judged safe to discontinue treatment with tyrosine kinase inhibitors (TKI) for chronic myeloid leukemia (CML) in experimental trials on treatment-free remission (TFR). We collected a total of 293 Italian patients with chronic phase CML who discontinued TKI in deep molecular response. Seventy-two percent of patients were on treatment with imatinib, and 28% with second generation TKI at the time of discontinuation. Median duration of treatment with the last TKI was 77 months [Interquartile Range (IQR) 54;111], median duration of deep molecular response was 46 months (IQR 31;74). Duration of treatment with TKI and duration of deep molecular response were shorter with second generation TKI than with imatinib (P&lt;0.001). Eighty-eight percent of patients discontinued as per clinical practice, and reasons for stopping treatment were: toxicity (20%), pregnancy (6%), and shared decision between treating physician and patient (62%). After a median follow up of 34 months (range, 12-161) overall estimated TFR was 62% (95%CI: 56;68). At 12 months, TFR was 68% (95%CI: 62;74) for imatinib, 73% (95%CI: 64;83) for second generation TKI. Overall median time to restart treatment was six months (IQR 4;11). No progressions occurred. Although our study has the limitation of a retrospective study, our experience within the Italian population confirms that discontinuation of imatinib and second generation TKI is feasible and safe in clinical practice
    • …
    corecore