14,196 research outputs found

    Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system

    Get PDF
    Oscillations in local field potentials in the β-frequency band (13-35 Hz) are a pervasive feature of human and nonhuman primate motor cortical areas. However, the function of such synchronous activity across populations of neurons remains unknown. Here, we test the hypothesis that β activity may promote existing motor set and posture while compromising processing related to new movements. Three experiments were performed. First, healthy subjects were instructed to make reaction time movements of the outstretched index finger in response to imperative cues triggered by transient increases in corticospinal synchrony, as evidenced by phasic elevations of β-frequency band microtremor and intermuscular synchrony. Second, healthy subjects were instructed to resist a stretch to the index finger triggered in the same way. Finger acceleration in the reaction time task and transcortical components of the stretch reflex were measured and compared with those elicited by random cue or stretch presentation. Finally, we sought a correlation between finger acceleration in the reaction time task and cortical synchrony directly measured from the electrocorticogram in two patients undergoing functional neurosurgery. We demonstrate that movements are slowed and transcortical responses to stretch are potentiated during periods of elevated β-band cortical synchrony. The results suggest that physiological periods of β synchrony are associated with a cortical state in which postural set is reinforced, but the speed of new movements impaired. The findings are of relevance to Parkinson's disease, in which subcortical and cortical β-band synchronization is exaggerated in the setting of increased tone and slowed movements

    Trans-sonic cusped shaped, periodic waves and solitary waves of the electrostatic ion-cyclotron type

    No full text
    International audienceBy adopting an essentially fluid dynamic viewpoint we derive the wave structure equation for stationary, fully nonlinear, electrostatic, ion-cyclotron waves. The existence of two fundamental constants of the motion, namely, conservation of momentum flux parallel to the ambient magnetic field, and energy flux parallel to the direction of wave propagation, enables the wave structure equation to be reduced to a first order differential equation, which has solutions that are physically transparent. The analysis shows that sufficiently oblique waves, propagating at sub-ion acoustic speeds, form soliton pulse-like solutions whose amplitudes are greatest for perpendicular propagation. Waves that propagate supersonically have periodic cnoidal waveforms, which are asymmetric about the compressive and rarefactive phases of the wave. It is also shown that there exist critical driver fields for which the end point of the compressive phase goes sonic (in the wave frame), with the consequence that the wave form develops a cusp. It is possible that this trans-sonic, choked flow feature provides a mechanism for the "spiky" waveforms observed in auroral electric field measurements

    HIV-associated multi-centric Castleman’s disease with multiple organ failure: cuccessful treatment with rituximab

    Get PDF
    Introduction: Multicentric Castleman's Disease (MCD), a lymphoproliferative disorder associated with Human Herpes Virus-8 (HHV-8) infection, is increasing in incidence amongst HIV patients. This condition is associated with lymphadenopathy, polyclonal gammopathy, hepato-splenomegaly and systemic symptoms. A number of small studies have demonstrated the efficacy of the anti-CD20 monoclonal antibody, rituximab, in treating this condition. Case presentation: We report the case of a 46 year old Zambian woman who presented with pyrexia, diarrhoea and vomiting, confusion, lymphadenopathy, and renal failure. She rapidly developed multiple organ failure following the initiation of treatment of MCD with rituximab. Following admission to intensive care (ICU), she received prompt multi-organ support. After 21 days on the ICU she returned to the haematology medical ward, and was discharged in remission from her disease after 149 days in hospital. Conclusion: Rituximab, the efficacy of which has thus far been examined predominantly in patients outside the ICU, in conjunction with extensive organ support was effective treatment for MCD with associated multiple organ failure. There is, to our knowledge, only one other published report of its successful use in an ICU setting, where it was combined with cyclophosphamide, adriamycin and prednisolone. Reports such as ours support the notion that critically unwell patients with HIV and haematological disease can benefit from intensive care

    Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules

    Get PDF
    We report a combined experimental and theoretical study of collision-induced dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped samples of 14N and 15N atoms with densities 5+/-2 x 10^{12} cm-3 and measure their magnetic relaxation rates at milli-Kelvin temperatures. Rigorous quantum scattering calculations based on accurate ab initio interaction potentials for the 7Sigma_u electronic state of N2 demonstrate that dipolar relaxation in N + N collisions occurs at a slow rate of ~10^{-13} cm3/s over a wide range of temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are insensitive to small variations of the interaction potential and to the magnitude of the spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We find consistency between the calculated and experimentally determined rates. Our results suggest that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.Comment: 48 pages, 17 figures, 3 table

    Influence of low-level Pr substitution on the superconducting properties of YBa2Cu3O7-delta single crystals

    Full text link
    We report on measurements on Y1-xPrxBa2Cu3O7-delta single crystals, with x varying from 0 to 2.4%. The upper and the lower critical fields, Hc2 and Hc1, the Ginzburg-Landau parameter and the critical current density, Jc(B), were determined from magnetization measurements and the effective media approach scaling method. We present the influence of Pr substitution on the pinning force density as well as on the trapped field profiles analyzed by Hall probe scanning.Comment: 4 pages, 5 figures, accepted for publication in J. Phys. Conf. Se

    Percolation Behaviour in the Magnetic Permeability and Electrical Conductivity in Conducting Magnetic - Insulating Non Magnetic Binary Composites

    Get PDF
    Experimental results of the complex magnetic permeability () and the electrical conductivity () of a granular paramagnetic Gadolinium Gallium Garnet (GGG: 0.326 vol%) and Teflon (PTFE) system are presented and discussed in relation to previously published (conductivity) and unpublished (permeability) studies on granular Fe3O4 talc and Ni talc wax systems. In these systems plots of the real conductivity ('(sub m)) against the volume fraction () lie on characteristic sigmoid curves that when fitted to the Two Exponent Phenomenological Percolation Equation (TEPPE) confirm the existence of percolation microstructures with critical volume fractions ((sub c)). The plots of the real and imaginary permeability ('(sub m)) and ("(sub m)) satisfactorily fit to the TEPPE using the (sub c) obtained in each case from the conductivity measurements. In all three cases the conductivity results gave the exponent t > 2, and the permeability results gave t < 1
    • …
    corecore