9 research outputs found

    Upper bounds on subglacial channel development for interior regions of the Greenland Ice Sheet

    Get PDF
    AbstractWe use a simple numerical model to test whether surface water influx to the bed of the interior Greenland ice sheet has the potential to cause significant subglacial channel growth similar to that observed near the ice-sheet margin and at alpine glaciers. We examine the effects on channel growth from (1) rapid supraglacial lake drainage events and (2) sustained water input into moulins. By assuming that all drainage occurs through subglacial channels and by prescribing favorable pressure conditions at the domain inlet, the model can provide upper bounds on channel growth. Our results indicate that R-channels do not grow significantly within the limited period of high pressure associated with lake drainage events. Subsequent channel growth only occurs with sustained pressures above overburden. Rapid closure of channels at low pressures suggests channels in the interior are unlikely to draw significant quantities of water from nearby distributed networks. These results indicate that other drainage mechanisms such as turbulent sheets or linked-cavity networks are likely to be of greater importance for interior subglacial drainage than the growth of channels.</jats:p

    Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed

    Get PDF
    This is the accepted manuscript. The final version is available from Nature Communications at http://www.nature.com/ncomms/2014/140929/ncomms6052/full/ncomms6052.html.The dynamic response of the Greenland Ice Sheet (GrIS) depends on feedbacks between surface meltwater delivery to the subglacial environment and ice flow. Recent work has highlighted an important role of hydrological processes in regulating the ice flow, but models have so far overlooked the mechanical effect of soft basal sediment. Here we use a three-dimensional model to investigate hydrological controls on a GrIS soft-bedded region. Our results demonstrate that weakening and strengthening of subglacial sediment, associated with the seasonal delivery of surface meltwater to the bed, modulates ice flow consistent with observations. We propose that sedimentary control on ice flow is a viable alternative to existing models of evolving hydrological systems, and find a strong link between the annual flow stability, and the frequency of high meltwater discharge events. Consequently, the observed GrIS resilience to enhanced melt could be compromised if runoff variability increases further with future climate warming.RCU

    Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland

    Get PDF
    Seismic amplitude-versus-angle (AVA) methods are a powerful means of quantifying the physical properties of subglacial material, but serious interpretative errors can arise when AVA is measured over a thinly-layered substrate. A substrate layer with a thickness less than 1/4 of the seismic wavelength, λ, is considered "thin", and reflections from its bounding interfaces superpose and appear in seismic data as a single reflection event. AVA interpretation of subglacial till can be vulnerable to such thin-layer effects, since a lodged (non-deforming) till can be overlain by a thin (metre-scale) cap of dilatant (deforming) till. We assess the potential for misinterpretation by simulating seismic data for a stratified subglacial till unit, with an upper dilatant layer between 0.1–5.0 m thick (λ / 120 to &gt; λ / 4, with &amp;lambda; = 12 m). For dilatant layers less than &amp;lambda; / 6 thick, conventional AVA analysis yields acoustic impedance and Poisson's ratio that indicate contradictory water saturation. A thin-layer interpretation strategy is proposed, that accurately characterises the model properties of the till unit. The method is applied to example seismic AVA data from Russell Glacier, West Greenland, in which characteristics of thin-layer responses are evident. A subglacial till deposit is interpreted, having lodged till (acoustic impedance = 4.26&amp;plusmn;0.59 &amp;times; 10&lt;sup&gt;6&lt;/sup&gt; kg m&lt;sup&gt;−2&lt;/sup&gt; s&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) underlying a water-saturated dilatant till layer (thickness &lt; 2 m, Poisson's ratio ~ 0.5). Since thin-layer considerations offer a greater degree of complexity in an AVA interpretation, and potentially avoid misinterpretations, they are a valuable aspect of quantitative seismic analysis, particularly for characterising till units

    High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet

    Get PDF
    We present ice thickness and bed topography maps with a high spatial resolution (250–500 m) of a land-terminating section of the Greenland Ice Sheet derived from ground-based and airborne radar surveys. The data have a total area of ~12 000 km2 and cover the whole ablation area of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of Isunnguata Sermia Glacier is overdeepened and reaches an elevation of ~500 m below sea level. The ice surface is smooth and only reflects the bedrock topography in a subtle way, resulting in a highly variable ice thickness. The southern part of our study area consists of higher bed elevations compared to the northern part. The compiled data sets of ground-based and airborne radar surveys cover one of the most studied regions of the Greenland Ice Sheet and can be valuable for detailed studies of ice sheet dynamics and hydrology. The combined data set is freely available at doi:10.1594/pangaea.830314

    Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet

    Get PDF
    AbstractWe present satellite-derived velocity patterns for the two contrasting melt seasons of 2009–10 across Russell Glacier catchment, a western, land-terminating sector of the Greenland ice sheet which encompasses the K(angerlussuaq)-transect. Results highlight great spatial heterogeneity in flow, indicating that structural controls such as bedrock geometry govern ice discharge into individual outlet troughs. Results also reveal strong seasonal flow variability extending 57 km up-glacier to 1200 m elevation, with the largest acceleration (100% over 11 days) occurring within 10 km of the margin coincident with spring melt. By late July 2010, 2 weeks before peak melt and runoff, 48 % of the 2400 km2 catchment had slowed to less than the winter mean. This observation supports the hypothesis that the subglacial hydrological system evolves from an inefficient distributed to an efficient drainage system, regulating flow dynamics. Despite this, the cumulative surface flux over the record melt year of 2010 was still greater compared with the perturbation over the average melt year of 2009. This study supports the proposition that local surface meltwater runoff couples to basal hydrology driving ice-sheet dynamics, and although the effect is nonlinear, our observations indicate that greater meltwater runoff yields increased net flux over this sector of the ice sheet.</jats:p

    Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet.

    Get PDF
    We present detailed records of lake discharge, ice motion and passive seismicity capturing the behaviour and processes preceding, during and following the rapid drainage of a 4 km&lt;sup&gt;2&lt;/sup&gt; supraglacial lake through 1.1-km-thick ice on the western margin of the Greenland Ice Sheet. Peak discharge of 3300 m&lt;sup&gt;3&lt;/sup&gt; s&lt;sup&gt;−1&lt;/sup&gt; coincident with maximal rates of vertical uplift indicates that surface water accessed the ice–bed interface causing widespread hydraulic separation and enhanced basal motion. The differential motion of four global positioning system (GPS) receivers located around the lake record the opening and closure of the fractures through which the lake drained. We hypothesise that the majority of discharge occurred through a 3-km-long fracture with a peak width averaged across its wetted length of 0.4 m. We argue that the fracture's kilometre-scale length allowed rapid discharge to be achieved by combining reasonable water velocities with sub-metre fracture widths. These observations add to the currently limited knowledge of in situ supraglacial lake drainage events, which rapidly deliver large volumes of water to the ice–bed interface

    An automated approach to the location of icequakes using seismic waveform amplitudes

    No full text
    Abstract We adapt from volcano seismology an automated method of locating icequakes with poorly defined onsets and indistinguishable seismic phases, which can be tuned to either body or surface waves. The method involves (1) the calculation of the root-mean-squared amplitudes of the filtered envelope signals, (2) a coarse-grid search to locate the hypocentres of the seismic events using their amplitudes and (3) refinement of hypocentre locations using an iteratively damped least-squares approach. First, we calibrate the adapted method by application to real data, recorded using a network of six passive seismometers, in response to surface explosions in known locations on the western margin of the Greenland ice sheet. Second, we present a seismic modelling experiment simulating rapid supraglacial lake drainage driven hydrofracture through 1 km thick ice. The test reveals horizontal and vertical location uncertainties of ∼121 m and 275 m, respectively. Since seismic emissions from glaciers and ice sheets often have complex waveforms akin to those considered here, our adapted method is likely to have widespread applicability to glaciological problems.</jats:p
    corecore