378 research outputs found
Following microscopic motion in a two dimensional glass-forming binary fluid
The dynamics of a binary mixture of large and small discs are studied at
temperatures approaching the glass transition using an analysis based on the
topology of the Voronoi polygon surrounding each atom. At higher temperatures
we find that dynamics is dominated by fluid-like motion that involves particles
entering and exiting the nearest-neighbour shells of nearby particles. As the
temperature is lowered, the rate of topological moves decreases and motion
becomes localised to regions of mixed pentagons and heptagons. In addition we
find that in the low temperature state particles may translate significant
distances without undergoing changes in their nearest neig hbour shell. These
results have implications for dynamical heterogeneities in glass forming
liquids.Comment: 12 pages, 7 figure
Active Brownian Motion Tunable by Light
Active Brownian particles are capable of taking up energy from their
environment and converting it into directed motion; examples range from
chemotactic cells and bacteria to artificial micro-swimmers. We have recently
demonstrated that Janus particles, i.e. gold-capped colloidal spheres,
suspended in a critical binary liquid mixture perform active Brownian motion
when illuminated by light. In this article, we investigate in some more details
their swimming mechanism leading to active Brownian motion. We show that the
illumination-borne heating induces a local asymmetric demixing of the binary
mixture generating a spatial chemical concentration gradient, which is
responsible for the particle's self-diffusiophoretic motion. We study this
effect as a function of the functionalization of the gold cap, the particle
size and the illumination intensity: the functionalization determines what
component of the binary mixture is preferentially adsorbed at the cap and the
swimming direction (towards or away from the cap); the particle size determines
the rotational diffusion and, therefore, the random reorientation of the
particle; and the intensity tunes the strength of the heating and, therefore,
of the motion. Finally, we harness this dependence of the swimming strength on
the illumination intensity to investigate the behaviour of a micro-swimmer in a
spatial light gradient, where its swimming properties are space-dependent
Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism
The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion of Reverbα drives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the global Reverbα -/- mouse). Repressive action of REVERBα in the liver therefore serves to buffer against metabolic challenge, rather than drive basal rhythmicity in metabolic activity
Susceptibility sets and the final outcome of collective Reed–Frost epidemics
This paper is concerned with exact results for the final outcome of stochastic SIR (susceptible → infective → recovered) epidemics among a closed, finite and homogeneously mixing population. The factorial moments of the number of initial susceptibles who ultimately avoid infection by such an epidemic are shown to be intimately related to the concept of a susceptibility set. This connection leads to simple, probabilistically illuminating proofs of exact results concerning the total size and severity of collective Reed–Frost epidemic processes, in terms of Gontcharoff polynomials, first obtained in a series of papers by Claude Lef`evre and Philippe Picard. The proofs extend easily to include general final state random variables defined on SIR epidemics, and also to multitype epidemics
The National COVID-19 Clinical Evidence Taskforce: pregnancy and perinatal guidelines.
INTRODUCTION: Pregnant women are at higher risk of severe illness from coronavirus disease 2019 (COVID-19) than non-pregnant women of a similar age. Early in the COVID-19 pandemic, it was clear that evidenced-based guidance was needed, and that it would need to be updated rapidly. The National COVID-19 Clinical Evidence Taskforce provided a resource to guide care for people with COVID-19, including during pregnancy. Care for pregnant and breastfeeding women and their babies was included as a priority when the Taskforce was set up, with a Pregnancy and Perinatal Care Panel convened to guide clinical practice. MAIN RECOMMENDATIONS: As of May 2022, the Taskforce has made seven specific recommendations on care for pregnant women and those who have recently given birth. This includes supporting usual practices for the mode of birth, umbilical cord clamping, skin-to-skin contact, breastfeeding, rooming-in, and using antenatal corticosteroids and magnesium sulfate as clinically indicated. There are 11 recommendations for COVID-19-specific treatments, including conditional recommendations for using remdesivir, tocilizumab and sotrovimab. Finally, there are recommendations not to use several disease-modifying treatments for the treatment of COVID-19, including hydroxychloroquine and ivermectin. The recommendations are continually updated to reflect new evidence, and the most up-to-date guidance is available online (https://covid19evidence.net.au). CHANGES IN MANAGEMENT RESULTING FROM THE GUIDELINES: The National COVID-19 Clinical Evidence Taskforce has been a critical component of the infrastructure to support Australian maternity care providers during the COVID-19 pandemic. The Taskforce has shown that a rapid living guidelines approach is feasible and acceptable
Fluid transport at low Reynolds number with magnetically actuated artificial cilia
By numerical modeling we investigate fluid transport in low-Reynolds-number
flow achieved with a special elastic filament or artifical cilium attached to a
planar surface. The filament is made of superparamagnetic particles linked
together by DNA double strands. An external magnetic field induces dipolar
interactions between the beads of the filament which provides a convenient way
of actuating the cilium in a well-controlled manner. The filament has recently
been used to successfully construct the first artificial micro-swimmer [R.
Dreyfus at al., Nature 437, 862 (2005)]. In our numerical study we introduce a
measure, which we call pumping performance, to quantify the fluid transport
induced by the magnetically actuated cilium and identify an optimum stroke
pattern of the filament. It consists of a slow transport stroke and a fast
recovery stroke. Our detailed parameter study also reveals that for
sufficiently large magnetic fields the artificial cilium is mainly governed by
the Mason number that compares frictional to magnetic forces. Initial studies
on multi-cilia systems show that the pumping performance is very sensitive to
the imposed phase lag between neighboring cilia, i.e., to the details of the
initiated metachronal wave.Comment: 12 pages, 10 figures. To appear in EPJE, available online at
http://dx.doi.org/10.1140/epje/i2008-10388-
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis
Self-incompatible diploid potatoes were altered to self-compatible ones by a function of S-locus inhibitor gene and continued selfing generated highly homozygous inbreds. In this study, this process was investigated for the status of DNA methylation by a simple method using genomic DNA digested by methylation-sensitive restriction enzymes prior to RAPD analysis. We detected 31 methylation-sensitive RAPD bands, of which 11 were newly appeared in the selfed progenies, and 6 of them stably inherited to subsequent generations. Aberrant segregations and paternal- or atavism-like transmission were also found. Segregating methylation-sensitive bands in initial populations became fixed in the advanced selfed progenies by 75.0–93.8%, of which 41.7% were fixed to all present and 58.3% to all absent. Because DNA methylation is generally recognized to suppress gene expression as regulatory factors, homozygosity/heterozygosity of methylated DNA may be involved in inbreeding depression/heterosis
- …