28 research outputs found

    Human β-D-3 Exacerbates MDA5 but Suppresses TLR3 Responses to the Viral Molecular Pattern Mimic Polyinosinic:Polycytidylic Acid

    Get PDF
    Human β-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six β-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-β in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-β. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-β, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans

    Between Hope and Hype: Traditional Knowledge(s) Held by Marginal Communities

    Full text link
    Traditional Knowledge (TK) systems have always been integral to the survival and adaptation of human societies. Yet, they enjoy a fairly recent recognition and popularization by scientists, the media, politicians, corporates and the wider public. In this paper we present a typology of key driving forces behind the popularization of TK held by marginal communities: an equality preference motive, a value motive, a compliance motive, a scarcity motive and a strategic motive. Secondly, through the use of a simple model, we discuss the hype's impact on marginal communities. Moreover, we critically assess the outcome of a number of policy instruments that intend, in part, to protect traditional knowledge bases of such communities. Our analysis primarily draws upon secondary literature; policy documents and case studies within economics, the social sciences, conservation biology and legal studies. We argue that whilst the public and institutional hype around TK may have resulted in its prioritization within international conventions and frameworks, its institutionalization may have adversely impacted marginalized communities, and in particular contexts, unintentionally led to the creation of 'new' marginals. We purport that the traditional innovation incentive motive does not hold for protecting TK within a private property regime. Instead we identify a conservation incentive motive and a distribution motive that justify deriving policy instruments that focus on TK to protect marginal communities

    Ocean Color Remote Sensing of Seagrass and Bathymetry in the Bahamas Banks by High-Resolution Airborne Imagery

    No full text
    New coastal ocean remote sensing techniques permit benthic habitats to be explored with higher resolution than ever before. A mechanistic radiative transfer approach is developed that first removes the distorting influence of the water column on the remotely sensed signal to retrieve an estimate of the reflectance at the seafloor. The retrieved bottom reflectance is then used to classify the benthos. This spectrally based approach is advantageous because model components are separate and can be evaluated and modified individually for different environments. Here, we applied our approach to quantitatively estimate shallow-water bathymetry and leaf area index (LAI) of the seagrass Thalassia testudinum for a study site near Lee Stocking Island, Bahamas. Two high-resolution images were obtained from the ocean portable hyperspectral imager for low-light spectroscopy (Ocean PHILLS) over the study site in May 1999 and 2000. A combination of in situ observations of seafloor reflectance and radiative transfer modeling was used to develop and test our algorithm. Bathymetry was mapped to meter-scale resolution using a site-specific relationship (r2 = 0.97) derived from spectral ratios of remote sensing reflectance at 555 and 670 nm. Depth-independent bottom reflectance was retrieved from remote sensing reflectance using bathymetry and tables of modeled water column attenuation coefficients. The magnitude of retrieved bottom reflectance was highly correlated to seagrass LAI measured from diver surveys at seven stations within the image (r2 = 0.88–0.98). Mapped turtlegrass LAI was remarkably stable over a 2-yr period at our study site, even though Hurricane Floyd swept over the study site in September 1999

    Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by highresolution airborne imagery. Limnology and Oceanography

    No full text
    New coastal ocean remote sensing techniques permit benthic habitats to be explored with higher resolution than ever before. A mechanistic radiative transfer approach is developed that first removes the distorting influence of the water column on the remotely sensed signal to retrieve an estimate of the reflectance at the seafloor. The retrieved bottom reflectance is then used to classify the benthos. This spectrally based approach is advantageous because model components are separate and can be evaluated and modified individually for different environments. Here, we applied our approach to quantitatively estimate shallow-water bathymetry and leaf area index (LAI) of the seagrass Thalassia testudinum for a study site near Lee Stocking Island, Bahamas. Two high-resolution images were obtained from the ocean portable hyperspectral imager for low-light spectroscopy (Ocean PHILLS) over the study site in May 1999 and 2000. A combination of in situ observations of seafloor reflectance and radiative transfer modeling was used to develop and test our algorithm. Bathymetry was mapped to meter-scale resolution using a site-specific relationship (r2 � 0.97) derived from spectral ratios of remote sensing reflectance at 555 and 670 nm. Depth-independent bottom reflectance was retrieved from remote sensing reflectance using bathymetry and tables of modeled water column attenuation coefficients. The magnitude of retrieved bottom reflectance was highly correlated to seagrass LAI measured from diver surveys at seven stations within the image (r2 � 0.88–0.98). Mappe
    corecore