28 research outputs found
Recommended from our members
Analysis of a Point-Source Integrating-Cavity Absorption Meter
We evaluate the theoretical performance of a point-source integrating-cavity absorption meter (PSICAM) with Monte Carlo simulations and a sensitivity analysis. We quantify the scattering errors, verifying that they are negligible for most ocean optics applications. Although the PSICAM detector response is highly sensitive to the value of the wall reflectivity, the absorption of an unknown fluid can be accurately determined with a PSICAM if appropriate reference solution(s) are chosen. We also quantify the error that results if the source is not perfectly isotropic, finding that moderate amounts of source anisotropy can be tolerated provided that the detector is properly located with respect to the source.This is the publisher's version of record. The original submission is copyrighted by Optical Society of America and can be found here: http://www.opticsinfobase.org/ao/home.cf
Recommended from our members
Ocean PHILLS hyperspectral imager : design, characterization, and calibration
The Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy (Ocean PHILLS) is a hyperspectral imager specifically designed for imaging the coastal ocean. It uses a thinned, backside-illuminated CCD for high sensitivity and an all-reflective spectrograph with a convex grating in an Offner configuration to produce a nearly distortion-free image. The sensor, which was constructed entirely from commercially available components, has been successfully deployed during several oceanographic experiments in 1999–2001. Here we describe the instrument design and present the results of laboratory characterization and calibration. We also present examples of remote-sensing reflectance data obtained from the LEO-15 site in New Jersey that agrees well with ground-truth measurements.Keywords: Remote sensing, Ocean optics, Visible spectroscop
Human β-D-3 Exacerbates MDA5 but Suppresses TLR3 Responses to the Viral Molecular Pattern Mimic Polyinosinic:Polycytidylic Acid
Human β-defensin 3 (hBD3) is a cationic host defence peptide and is part of the innate immune response. HBD3 is present on a highly copy number variable block of six β-defensin genes, and increased copy number is associated with the autoimmune disease psoriasis. It is not known how this increase influences disease development, but psoriasis is a T cell-mediated disease and activation of the innate immune system is required for the initial trigger that leads to the amplification stage. We investigated the effect of hBD3 on the response of primary macrophages to various TLR agonists. HBD3 exacerbated the production of type I Interferon-β in response to the viral ligand mimic polyinosinic:polycytidylic acid (polyI:C) in both human and mouse primary cells, although production of the chemokine CXCL10 was suppressed. Compared to polyI:C alone, mice injected with both hBD3 peptide and polyI:C also showed an enhanced increase in Interferon-β. Mice expressing a transgene encoding hBD3 had elevated basal levels of Interferon-β, and challenge with polyI:C further increased this response. HBD3 peptide increased uptake of polyI:C by macrophages, however the cellular response and localisation of polyI:C in cells treated contemporaneously with hBD3 or cationic liposome differed. Immunohistochemistry showed that hBD3 and polyI:C do not co-localise, but in the presence of hBD3 less polyI:C localises to the early endosome. Using bone marrow derived macrophages from knockout mice we demonstrate that hBD3 suppresses the polyI:C-induced TLR3 response mediated by TICAM1 (TRIF), while exacerbating the cytoplasmic response through MDA5 (IFIH1) and MAVS (IPS1/CARDIF). Thus, hBD3, a highly copy number variable gene in human, influences cellular responses to the viral mimic polyI:C implying that copy number may have a significant phenotypic effect on the response to viral infection and development of autoimmunity in humans
Between Hope and Hype: Traditional Knowledge(s) Held by Marginal Communities
Traditional Knowledge (TK) systems have always been integral to the survival and adaptation of human societies. Yet, they enjoy a fairly recent recognition and popularization by scientists, the media, politicians, corporates and the wider public. In this paper we present a typology of key driving forces behind the popularization of TK held by marginal communities: an equality preference motive, a value motive, a compliance motive, a scarcity motive and a strategic motive. Secondly, through the use of a simple model, we discuss the hype's impact on marginal communities. Moreover, we critically assess the outcome of a number of policy instruments that intend, in part, to protect traditional knowledge bases of such communities. Our analysis primarily draws upon secondary literature; policy documents and case studies within economics, the social sciences, conservation biology and legal studies. We argue that whilst the public and institutional hype around TK may have resulted in its prioritization within international conventions and frameworks, its institutionalization may have adversely impacted marginalized communities, and in particular contexts, unintentionally led to the creation of 'new' marginals. We purport that the traditional innovation incentive motive does not hold for protecting TK within a private property regime. Instead we identify a conservation incentive motive and a distribution motive that justify deriving policy instruments that focus on TK to protect marginal communities
Ocean Color Remote Sensing of Seagrass and Bathymetry in the Bahamas Banks by High-Resolution Airborne Imagery
New coastal ocean remote sensing techniques permit benthic habitats to be explored with higher resolution than ever before. A mechanistic radiative transfer approach is developed that first removes the distorting influence of the water column on the remotely sensed signal to retrieve an estimate of the reflectance at the seafloor. The retrieved bottom reflectance is then used to classify the benthos. This spectrally based approach is advantageous because model components are separate and can be evaluated and modified individually for different environments. Here, we applied our approach to quantitatively estimate shallow-water bathymetry and leaf area index (LAI) of the seagrass Thalassia testudinum for a study site near Lee Stocking Island, Bahamas. Two high-resolution images were obtained from the ocean portable hyperspectral imager for low-light spectroscopy (Ocean PHILLS) over the study site in May 1999 and 2000. A combination of in situ observations of seafloor reflectance and radiative transfer modeling was used to develop and test our algorithm. Bathymetry was mapped to meter-scale resolution using a site-specific relationship (r2 = 0.97) derived from spectral ratios of remote sensing reflectance at 555 and 670 nm. Depth-independent bottom reflectance was retrieved from remote sensing reflectance using bathymetry and tables of modeled water column attenuation coefficients. The magnitude of retrieved bottom reflectance was highly correlated to seagrass LAI measured from diver surveys at seven stations within the image (r2 = 0.88–0.98). Mapped turtlegrass LAI was remarkably stable over a 2-yr period at our study site, even though Hurricane Floyd swept over the study site in September 1999
Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by highresolution airborne imagery. Limnology and Oceanography
New coastal ocean remote sensing techniques permit benthic habitats to be explored with higher resolution than ever before. A mechanistic radiative transfer approach is developed that first removes the distorting influence of the water column on the remotely sensed signal to retrieve an estimate of the reflectance at the seafloor. The retrieved bottom reflectance is then used to classify the benthos. This spectrally based approach is advantageous because model components are separate and can be evaluated and modified individually for different environments. Here, we applied our approach to quantitatively estimate shallow-water bathymetry and leaf area index (LAI) of the seagrass Thalassia testudinum for a study site near Lee Stocking Island, Bahamas. Two high-resolution images were obtained from the ocean portable hyperspectral imager for low-light spectroscopy (Ocean PHILLS) over the study site in May 1999 and 2000. A combination of in situ observations of seafloor reflectance and radiative transfer modeling was used to develop and test our algorithm. Bathymetry was mapped to meter-scale resolution using a site-specific relationship (r2 � 0.97) derived from spectral ratios of remote sensing reflectance at 555 and 670 nm. Depth-independent bottom reflectance was retrieved from remote sensing reflectance using bathymetry and tables of modeled water column attenuation coefficients. The magnitude of retrieved bottom reflectance was highly correlated to seagrass LAI measured from diver surveys at seven stations within the image (r2 � 0.88–0.98). Mappe
Recommended from our members
Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: A comparative spectral classification approach
Remote sensing is a valuable tool for rapid identification of benthic features in coastal environments. Past applications have been limited, however, by multispectral models that are typically difficult to apply when bottom types are heterogeneous and complex. We attempt to overcome these limitations by using a spectral library of remote sensing reflectance (Rrs), generated through radiative transfer computations, to classify image pixels according to bottom type and water depth. Rrs spectra were calculated for water depths ranging from 0.5 to 20 m at 0.5− to 1.0−m depth intervals using measured reflectance spectra from sediment, seagrass, and pavement bottom types and inherent optical properties of the water. To verify the library, computed upwelling radiance and downwelling irradiance spectra were compared to field measurements obtained with a hyperspectral tethered spectral radiometer buoy (TSRB). Comparisons between simulated spectra and TSRB data showed close matches in signal shape and magnitude. The library classification method was tested on hyperspectral data collected using a portable hyperspectral imager for low light spectroscopy (PHILLS) airborne sensor near Lee Stocking Island, Bahamas. Two hyperspectral images were classified using a minimum‐distance method. Comparisons with ground truth data indicate that library classification can be successful at identifying bottom type and water depth information from hyperspectral imagery. With the addition of diverse sediments types and different species of corals, seagrass, and algae, spectral libraries will have the potential to serve as valuable tools for identifying characteristic wavelengths that can be incorporated into bottom classification and bathymetry algorithms
Recommended from our members
Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments
This study uses derivative spectroscopy to assess qualitative and quantitative information regarding seafloor types that can be extracted from hyperspectral remote sensing reflectance signals. Carbonate sediments with variable concentrations of microbial pigments were used as a model system. Reflectance signals measured directly over sediment bottoms were compared with remotely sensed data from the same sites collected using an airborne sensor. Absorption features associated with accessory pigments in the sediments were lost to the water column. However major sediment pigments, chlorophyll a and fucoxanthin, were identified in the remote sensing spectra and showed quantitative correlation with sediment pigment concentrations. Derivative spectra were also used to create a simple bathymetric algorithm