3,066 research outputs found

    Tales from the playing field: black and minority ethnic students' experiences of physical education teacher education

    Get PDF
    This article presents findings from recent research exploring black and minority ethnic (BME) students’ experiences of Physical Education teacher education (PETE) in England (Flintoff, 2008). Despite policy initiatives to increase the ethnic diversity of teacher education cohorts, BME students are under-represented in PETE, making up just 2.94% of the 2007/8 national cohort, the year in which this research was conducted. Drawing on in-depth interviews and questionnaires with 25 BME students in PETE, the study sought to contribute to our limited knowledge and understanding of racial and ethnic difference in PE, and to show how ‘race,’ ethnicity and gender are interwoven in individuals’ embodied, everyday experiences of learning how to teach. In the article, two narratives in the form of fictional stories are used to present the findings. I suggest that narratives can be useful for engaging with the experiences of those previously silenced or ignored within Physical Education (PE); they are also designed to provoke an emotional as well as an intellectual response in the reader. Given that teacher education is a place where we should be engaging students, emotionally and politically, to think deeply about teaching, education and social justice and their place within these, I suggest that such stories of difference might have a useful place within a critical PETE pedagogy

    Effect of an atom on a quantum guided field in a weakly driven fiber-Bragg-grating cavity

    Full text link
    We study the interaction of an atom with a quantum guided field in a weakly driven fiber-Bragg-grating (FBG) cavity. We present an effective Hamiltonian and derive the density-matrix equations for the combined atom-cavity system. We calculate the mean photon number, the second-order photon correlation function, and the atomic excited-state population. We show that, due to the confinement of the guided cavity field in the fiber cross-section plane and in the space between the FBG mirrors, the presence of the atom in the FBG cavity can significantly affect the mean photon number and the photon statistics even though the cavity finesse is moderate, the cavity is long, and the probe field is weak.Comment: Accepted for Phys. Rev.

    Microcavities coupled to multilevel atoms

    Full text link
    A three-level atom in the Λ\Lambda-configuration coupled to a microcavity is studied. The two transitions of the atom are assumed couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both, in the strong-coupling and the bad cavity limit. We find that compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.Comment: 14 pages, 9 figure

    Husimi's Q(α)Q(\alpha) function and quantum interference in phase space

    Full text link
    We discuss a phase space description of the photon number distribution of non classical states which is based on Husimi's Q(α)Q(\alpha) function and does not rely in the WKB approximation. We illustrate this approach using the examples of displaced number states and two photon coherent states and show it to provide an efficient method for computing and interpreting the photon number distribution . This result is interesting in particular for the two photon coherent states which, for high squeezing, have the probabilities of even and odd photon numbers oscillating independently.Comment: 15 pages, 12 figures, typos correcte

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices

    Product Analytics Based On Demographic Democratization

    Get PDF
    Product analytics is a blend of computational methods with the express purpose of facilitating the multifaceted process of decision-making based on demographic and consumer preferences.  This complex subject is derived from consensus theory and includes structured analytics, categories, and the combination of evidence.  The methodology is applicable to a wide range of business, economic, social, political, and strategic decisions.  The paper describes a product allocation application to demonstrate the concepts

    On the Squeezed Number States and their Phase Space Representations

    Get PDF
    We compute the photon number distribution, the Q distribution function and the wave functions in the momentum and position representation for a single mode squeezed number state using generating functions which allow to obtain any matrix element in the squeezed number state representation from the matrix elements in the squeezed coherent state representation. For highly squeezed number states we discuss the previously unnoted oscillations which appear in the Q function. We also note that these oscillations can be related to the photon-number distribution oscillations and to the momentum representation of the wave function.Comment: 16 pages, 9 figure

    Monte Carlo techniques for real-time quantum dynamics

    Full text link
    The stochastic-gauge representation is a method of mapping the equation of motion for the quantum mechanical density operator onto a set of equivalent stochastic differential equations. One of the stochastic variables is termed the "weight", and its magnitude is related to the importance of the stochastic trajectory. We investigate the use of Monte Carlo algorithms to improve the sampling of the weighted trajectories and thus reduce sampling error in a simulation of quantum dynamics. The method can be applied to calculations in real time, as well as imaginary time for which Monte Carlo algorithms are more-commonly used. The method is applicable when the weight is guaranteed to be real, and we demonstrate how to ensure this is the case. Examples are given for the anharmonic oscillator, where large improvements over stochastic sampling are observed.Comment: 28 pages, submitted to J. Comp. Phy

    Atom correlations and spin squeezing near the Heisenberg limit: finite system size effect and decoherence

    Full text link
    We analyze a model for spin squeezing based on the so-called counter-twisting Hamiltonian, including the effects of dissipation and finite system size. We discuss the conditions under which the Heisenberg limit, i.e. phase sensitivity ∝1/N\propto 1/N, can be achieved. A specific implementation of this model based on atom-atom interactions via quantized photon exchange is presented in detail. The resulting excitation corresponds to the creation of spin-flipped atomic pairs and can be used for fast generation of entangled atomic ensembles, spin squeezing and apllications in quantum information processing. The conditions for achieving strong spin squeezing with this mechanism are also analyzed.Comment: 15 pages, 8 figure

    Dielectric multilayer waveguides for TE and TM mode matching

    Full text link
    We analyse theoretically for the first time to our knowledge the perfect phase matching of guided TE and TM modes with a multilayer waveguide composed of linear isotropic dielectric materials. Alongside strict investigation into dispersion relations for multilayer systems, we give an explicit qualitative explanation for the phenomenon of mode matching on the basis of the standard one-dimensional homogenization technique, and discuss the minimum number of layers and the refractive index profile for the proposed device scheme. Direct applications of the scheme include polarization-insensitive, intermodal dispersion-free planar propagation, efficient fibre-to-planar waveguide coupling and, potentially, mode filtering. As a self-sufficient result, we present compact analytical expressions for the mode dispersion in a finite, N-period, three-layer dielectric superlattice.Comment: 13 pages with figure
    • 

    corecore