2,440 research outputs found

    Mapping of serotype-specific, immunodominant epitopes in the NS-4 region of hepatitis C virus (HCV):use of type-specific peptides to serologically differentiate infections with HCV types 1, 2, and 3

    Get PDF
    The effect of sequence variability between different types of hepatitis C virus (HCV) on the antigenicity of the NS-4 protein was investigated by epitope mapping and by enzyme-linked immunosorbent assay with branched oligopeptides. Epitope mapping of the region between amino acid residues 1679 and 1768 in the HCV polyprotein revealed two major antigenic regions (1961 to 1708 and 1710 to 1728) that were recognized by antibody elicited upon natural infection of HCV. The antigenic regions were highly variable between variants of HCV, with only 50 to 60% amino acid sequence similarity between types 1, 2, and 3. Although limited serological cross-reactivity between HCV types was detected between peptides, particularly in the first antigenic region of NS-4, type-specific reactivity formed the principal component of the natural humoral immune response to NS-4. Type-specific antibody to particular HCV types was detected in 89% of the samples from anti-HCV-positive blood donors and correlated almost exactly with genotypic analysis of HCV sequences amplified from the samples by polymerase chain reaction. Whereas almost all blood donors appeared to be infected with a single virus type (97%), a higher proportion of samples (40%) from hemophiliacs infected from transfusion of non-heat-inactivated clotting factor contained antibody to two or even all three HCV types, providing evidence that long-term exposure may lead to multiple infection with different variants of HCV

    Conditional Reverse Tet-Transactivator Mouse Strains for the Efficient Induction of TRE-Regulated Transgenes in Mice

    Get PDF
    Tetracycline or doxycycline (dox)-regulated control of genetic elements allows inducible, reversible and tissue specific regulation of gene expression in mice. This approach provides a means to investigate protein function in specific cell lineages and at defined periods of development and disease. Efficient and stable regulation of cDNAs or non-coding elements (e.g. shRNAs) downstream of the tetracycline-regulated element (TRE) requires the robust expression of a tet-transactivator protein, commonly the reverse tet-transactivator, rtTA. Most rtTA strains rely on tissue specific promoters that often do not provide sufficient rtTA levels for optimal inducible expression. Here we describe the generation of two mouse strains that enable Cre-dependent, robust expression of rtTA3, providing tissue-restricted and consistent induction of TRE-controlled transgenes. We show that these transgenic strains can be effectively combined with established mouse models of disease, including both Cre/LoxP-based approaches and non Cre-dependent disease models. The integration of these new tools with established mouse models promises the development of more flexible genetic systems to uncover the mechanisms of development and disease pathogenesis

    Reversible suppression of an essential gene in adult mice using transgenic RNA interference

    Get PDF
    RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8-11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system

    The Strange Quark Contribution to the Proton's Magnetic Moment

    Get PDF
    We report a new determination of the strange quark contribution to the proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2 from parity-violating e-p elastic scattering. The result uses a revised analysis of data from the SAMPLE experiment which was carried out at the MIT-Bates Laboratory. The data are combined with a calculation of the proton's axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +- 0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.

    The Causal Structure of Emotions in Aristotle: Hylomorphism, Causal Interaction between Mind and Body, and Intentionality

    Get PDF
    Recently, a strong hylomorphic reading of Aristotelian emotions has been put forward, one that allegedly eliminates the problem of causal interaction between soul and body. Taking the presentation of emotions in de An. I 1 as a starting point and basic thread, but relying also on the discussion of Rh. II, I will argue that this reading only takes into account two of the four causes of emotions, and that, if all four of them are included into the picture, then a causal interaction of mind and body remains within Aristotelian emotions, independent of how strongly their hylomorphism is understood. Beyond the discussion with this recent reading, the analysis proposed of the fourfold causal structure of emotions is also intended as a hermeneutical starting point for a comprehensive analysis of particular emotions in Aristotle. Through the different causes Aristotle seems to account for many aspects of the complex phenomenon of emotion, including its physiological causes, its mental causes, and its intentional object

    Pten loss promotes MAPK pathway dependency in HER2/neu breast carcinomas

    Get PDF
    Loss of the tumor suppressor gene PTEN is implicated in breast cancer progression and resistance to targeted therapies, and is thought to promote tumorigenesis by activating PI3K signaling. In a transgenic model of breast cancer, Pten suppression using a tetracycline-regulatable short hairpin (sh)RNA cooperates with human epidermal growth factor receptor 2 (HER2/neu), leading to aggressive and metastatic disease with elevated signaling through PI3K and, surprisingly, the mitogen-activated protein kinase (MAPK) pathway. Restoring Pten function is sufficient to down-regulate both PI3K and MAPK signaling and triggers dramatic tumor regression. Pharmacologic inhibition of MAPK signaling produces similar effects to Pten restoration, suggesting that the MAPK pathway contributes to the maintenance of advanced breast cancers harboring Pten loss

    Global wave loads on a damaged ship

    Get PDF
    A computational tool was applied based on a two dimensional linear method to predict the hydrodynamic loads for damaged ships. Experimental tests on a ship model have also been carried out to predict the hydrodynamic loads in various design conditions. The results of the theoretical method and experimental tests are compared to validate the theoretical method. The extreme wave induced loads have been calculated by short term prediction. For the loads in intact condition, the prediction with duration of 20 years at sea state 5 is used, while for loads in damaged conditions the prediction in 96 hours exposure time at sea 3 is used. The maximum values of the most probable extreme amplitudes of dynamic wave induced loads in damaged conditions are much less than those in intact condition because of the reduced time. An opening could change the distribution of not only stillwater bending moment but also wave-induced bending moment. It is observed that although some cross sections are not structurally damaged, the total loads acting on these cross sections after damage may be increased dramatically compared to the original design load in intact condition
    corecore