49 research outputs found

    Platelets induce free and phospholipid-esterified 12-hydroxyeicosatetraenoic acid generation in colon cancer cells by delivering 12-lipoxygenase

    Get PDF
    Platelets promote tumor metastasis by inducing promalignant phenotypes in cancer cells and directly contributing to cancer-related throm-botic complications. Platelet-derived extracellular vesicles (EVs) can promote epithelial-mesenchymal transition (EMT) in cancer cells, which confers high-grade malignancy. 12S-hydroxyeicosatetraenoic acid (12-HETE) generated by platelet-type 12-lipoxygenase (12-LOX) is considered a key modulator of cancer metastasis through unknown mechanisms. In plate-lets, 12-HETE can be esterified into plasma membrane phospholipids (PLs), which drive thrombosis. Using cocultures of human platelets and human colon adenocarcinoma cells (line HT29) and LC-MS/MS, we investigated the impact of platelets on cancer cell biosynthesis of 12S-HETE and its esterification into PLs and whether platelet ability to transfer its mo-lecular cargo might play a role. To this aim, we performed coculture experiments with CFSE[5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester]-loaded platelets. HT29 cells did not generate 12S-HETE or express 12-LOX. However, they ac-quired the capacity to produce 12S-HETE mainly esterified in plasmalogen phospholipid forms following the uptake of platelet-derived medium-sized EVs (mEVs) expressing 12-LOX. 12-LOX was detected in plasma mEV of patients with adenomas/ adenocarcinomas, implying their potential to deliver the protein to cancer cells in vivo. In cancer cells exposed to platelets, endogenous but not exogenous 12S-HETE contributed to changes in EMT gene expression, mitigated by three structurally unrelated 12-LOX inhibitors. In conclusion, we showed that platelets induce the generation of primarily esteri-fied 12-HETE in colon cancer cells following mEV-mediated delivery of 12-LOX. The modification of cancer cell phospholipids by 12-HETE may functionally impact cancer cell biology and represent a novel target for anticancer agent development

    Enhancing the pharmacodynamic profile of a class of selective COX-2 inhibiting nitric oxide donors

    Get PDF
    We report herein the development, synthesis, physicochemical and pharmacological characterization of a novel class of pharmacodynamic hybrids that selectively inhibit cyclooxygenase-2 (COX-2) isoform and present suitable nitric oxide releasing properties. The replacement of the ester moiety with the amide group gave access to in vivo more stable and active derivatives that highlighted outstanding pharmacological properties. In particular, the glycine derivative proved to be extremely active in suppressing hyperalgesia and edema. © 2013 Elsevier Ltd. All rights reserved

    Novel analgesic/anti-inflammatory agents: 1,5-diarylpyrrole nitrooxyalkyl ethers and related compounds as cyclooxygenase-2 inhibiting nitric oxide donors

    Get PDF
    A series of 3-substituted 1,5-diarylpyrroles bearing a nitrooxyalkyl side chain linked to different spacers were designed. New classes of pyrrole-derived nitrooxyalkyl inverse esters, carbonates, and ethers (7-10) as COX-2 selective inhibitors and NO donors were synthesized and are herein reported. By taking into account the metabolic conversion of nitrooxyalkyl ethers (9, 10) into corresponding alcohols, derivatives 17 and 18 were also studied. Nitrooxy derivatives showed NO-dependent vasorelaxing properties, while most of the compounds proved to be very potent and selective COX-2 inhibitors in in vitro experimental models. Further in vivo studies on compounds 9a,c and 17a highlighted good anti-inflammatory and antinociceptive activities. Compound 9c was able to inhibit glycosaminoglycan (GAG) release induced by interleukin-1β (IL-1β), showing cartilage protective properties. Finally, molecular modeling and (1)H- and (13)C-NMR studies performed on compounds 6c,d, 9c, and 10b allowed the right conformation of nitrooxyalkyl ester and ether side chain of these molecules within the COX-2 active site to be assessed

    Reduced risk of Barrett’s esophagus in statin users: case–control study and meta-analysis

    Get PDF
    Background: Use of statins has been associated with a reduced incidence of esophageal adenocarcinoma in population-based studies. However there are few studies examining statin use and the development of Barrett’s esophagus. Aim: The purpose of this study was to examine the association between statin use and the presence of Barrett’s esophagus in patients having their first gastroscopy. Methods: We have performed a case–control study comparing statin use between patients with, and without, an incident diagnosis of non-dysplastic Barrett’s esophagus. Male Barrett’s cases (134) were compared to 268 male age-matched controls in each of two control groups (erosive gastro-esophageal reflux and dyspepsia without significant upper gastrointestinal disease). Risk factor and drug exposure were established using standardised interviews. Logistic regression was used to compare statin exposure and correct for confounding factors. We performed a meta-analysis pooling our results with three other case–control studies. Results: Regular statin use was associated with a significantly lower incidence of Barrett’s esophagus compared to the combined control groups [adjusted OR 0.62 (95 % confidence intervals 0.37–0.93)]. This effect was more marked in combined statin plus aspirin users [adjusted OR 0.43 (95 % CI 0.21–0.89)]. The inverse association between statin or statin plus aspirin use and risk of Barrett’s was significantly greater with longer duration of use. Meta-analysis of pooled data (1098 Barrett’s, 2085 controls) showed that statin use was significantly associated with a reduced risk of Barrett’s esophagus [pooled adjusted OR 0.63 (95 % CI 0.51–0.77)]. Conclusions: Statin use is associated with a reduced incidence of a new diagnosis of Barrett’s esophagus

    Hypertriglyceridemia is associated with decline of estimated glomerular filtration rate and risk of end-stage kidney disease in a real-word Italian cohort: Evidence from the TG-RENAL Study

    Get PDF
    Background: This analysis investigated the role of hypertriglyceridemia on renal function decline and development of end-stage kidney disease (ESKD) in a real-world clinical setting. Methods: A retrospective analysis using administrative databases of 3 Italian Local Health Units was performed searching patients with at least one plasma triglyceride (TG) measurement between 2013 and June 2020, followed-up until June 2021. Outcome measures included reduction in estimated glomerular filtration rate (eGFR) ≥30% from baseline and ESKD onset. Subjects with normal (normal-TG), high (HTG) and very high TG levels (vHTG) (respectively <150 mg/dL, 150-500 mg/dL and >500 mg/dL) were comparatively evaluated. Results: Overall 45,000 subjects (39,935 normal-TGs, 5,029 HTG and 36 vHTG) with baseline eGFR of 96.0 ± 66.4 mL/min were considered. The incidence of eGFR reduction was 27.1 and 31.1 and 35.1 per 1000 person-years, in normal-TG, HTG and vHTG subjects, respectively (P<0.01). The incidence of ESKD was 0.7 and 0.9 per 1000 person-years, in normal-TG and HTG/vHTG subjects, respectively (P<0.01). Univariate and multivariate analyses revealed that HTG subjects had a risk of eGFR reduction or ESKD occurrence (composite endpoint) increased by 48% compared to normal-TG subjects (adjusted OR:1.485, 95%CI 1.300-1.696; P<0.001). Moreover, each 50 mg/dL increase in TG levels resulted in significantly greater risk of eGFR reduction (OR:1.062, 95%CI 1.039-1.086 P<0.001) and ESKD (OR:1.174, 95%CI 1.070-1.289, P = 0.001). Conclusions: This real-word analysis in a large cohort of individuals with low-to-moderate cardiovascular risk suggests that moderate-to-severe elevation of plasma TG levels is associated with a significantly increased risk of long-term kidney function deterioration

    Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia

    Get PDF
    Accumulating evidence indicate that the gap-junction inhibitor carbenoxolone (CBX) regulates neuronal synchronization, depresses epileptiform activity and has a neuroprotective action. These CBX effects do not depend solely on its ability to inhibit gap junction channels formed by connexins (Cx), but the underlying mechanisms remain to be elucidated. Here we addressed the questions whether CBX modulates volume-regulated anion channels (VRAC) involved in the regulatory volume decrease and regulates the associated release of excitatory amino acids in cultured rat cortical astrocytes. We found that CBX inhibits VRAC conductance with potency comparable to that able to depress the activity of the most abundant astroglial gap junction protein connexin43 (Cx43). However, the knock down of Cx43 with small interfering RNA (siRNA) oligonucleotides and the use of various pharmacological tools revealed that VRAC inhibition was not mediated by interaction of CBX with astroglial Cx proteins. Comparative experiments in HEK293 cells stably expressing another putative target of CBX, the purinergic ionotropic receptor P2X7, indicate that the presence of this receptor was not necessary for CBX-mediated depression of VRAC. Finally, we show that in COS-7 cells, which are not endowed with pannexin-1 protein, another astroglial plasma membrane interactor of CBX, VRAC current retained its sensitivity to CBX. Complementary analyses indicate that the VRAC-mediated release of excitatory amino acid aspartate was decreased by CBX. Collectively, these findings support the notion that CBX could affect astroglial ability to modulate neuronal activity by suppressing excitatory amino acid release through VRAC, thereby providing a possible mechanistic clue for the neuroprotective effect of CBX in vivo

    Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia

    No full text
    Accumulating evidence indicate that the gap-junction inhibitor carbenoxolone (CBX) regulates neuronal synchronization, depresses epileptiform activity and has a neuroprotective action. These CBX effects do not depend solely on its ability to inhibit gap junction channels formed by connexins (Cx), but the underlying mechanisms remain to be elucidated. Here we addressed the questions whether CBX modulates volume-regulated anion channels (VRAC) involved in the regulatory volume decrease and regulates the associated release of excitatory amino acids in cultured rat cortical astrocytes. We found that CBX inhibits VRAC conductance with potency comparable to that able to depress the activity of the most abundant astroglial gap junction protein connexin43 (Cx43). However, the knock down of Cx43 with small interfering RNA (siRNA) oligonucleotides and the use of various pharmacological tools revealed that VRAC inhibition was not mediated by interaction of CBX with astroglial Cx proteins. Comparative experiments in HEK293 cells stably expressing another putative target of CBX, the purinergic ionotropic receptor P2X7, indicate that the presence of this receptor was not necessary for CBX-mediated depression of VRAC. Finally, we show that in COS-7 cells, which are not endowed with pannexin-1 protein, another astroglial plasma membrane interactor of CBX, VRAC current retained its sensitivity to CBX. Complementary analyses indicate that the VRAC-mediated release of excitatory amino acid aspartate was decreased by CBX. Collectively, these findings support the notion that CBX could affect astroglial ability to modulate neuronal activity by suppressing excitatory amino acid release through VRAC, thereby providing a possible mechanistic clue for the neuroprotective effect of CBX in vivo

    Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells

    Get PDF
    We investigated whether platelets prime colon cancer cells for metastasis and whether pharmacological inhibition of platelet function may prevent it. Coculturing HT29 human colon carcinoma cells with human platelets led to the induction of mesenchymal-like cancer cells characterized by downregulation of E-cadherin and upregulation of Twist1, enhanced cell mobility and a proaggregatory action on platelets. These changes were prevented by different antiplatelet agents, aspirin[an inhibitor of cyclooxygenase(COX)-1], DG-041[an antagonist of prostaglandin(PG)E2 EP3 receptor] and ticagrelor (a P2Y12 receptor antagonist). The injection of HT29 cells, exposed to platelets in vitro, into the tail vein of humanized immunodeficient mice led to higher incidence of lung metastasis compared to the injection of untreated HT29 cells. This effect was associated with enhanced systemic biosynthesis of thromboxane(TX)A2 and PGE2 in vivo. Platelet COX-1 inhibition by aspirin administration to mice prevented the increased rate of metastasis as well as the enhanced production of TXA2 and PGE2 induced by the in vitro priming of HT29 cells by platelets. In conclusion, targeting platelet COX-1 with low-dose aspirin exerts an antimetastatic action by averting the stem cell mimicry of cancer cells associated with enhanced proaggregatory effects induced by platelet-tumor cell interactions. These effects may be shared by other antiplatelet drugs
    corecore