36 research outputs found

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Hybrid and Conventional Mesons in the Flux Tube Model: Numerical Studies and their Phenomenological Implications

    Full text link
    We present results from analytical and numerical studies of a flux tube model of hybrid mesons. Our numerical results use a Hamiltonian Monte Carlo algorithm and so improve on previous analytical treatments, which assumed small flux tube oscillations and an adiabatic separation of quark and flux tube motion. We find that the small oscillation approximation is inappropriate for typical hadrons and that the hybrid mass is underestimated by the adiabatic approximation. For physical parameters in the ``one-bead" flux tube model we estimate the lightest hybrid masses (ΛL=1P{}_\Lambda L = {}_1 P states) to be 1.8-1.9~GeV for uuˉu\bar u hybrids, 2.1-2.2~GeV for ssˉs\bar s and 4.1-4.2~GeV for ccˉc\bar c. We also determine masses of conventional qqˉq\bar q mesons with L=0L=0 to L=3L=3 in this model, and confirm good agreement with experimental JJ-averaged multiplet masses. Mass estimates are also given for hybrids with higher orbital and flux-tube excitations. The gap from the lightest hybrid level (1P{}_1P) to the first hybrid orbital excitation (1D{}_1D) is predicted to be 0.4\approx 0.4~GeV for light quarks (q=u,d)(q=u,d) and 0.3\approx 0.3~GeV for q=cq=c. Both 1P{}_1P and 1D{}_1D hybrid multiplets contain the exotics 1+1^{-+} and 2+2^{+-}; in addition the 1P{}_1P has a 0+0^{+-} and the 1D{}_1D contains a 3+3^{-+}. Hybrid mesons with doubly-excited flux tubes are also considered. The implications of our results for spectroscopy are discussed, with emphasis on charmonium hybrids, which may be accessible at facilities such as BEPC, KEK, a Tau-Charm Factory, and in ψ\psi production at hadron colliders.Comment: 39 pages of RevTex. Figures available via anonymous ftp at ftp://compsci.cas.vanderbilt.edu/QSM/bcsfig1.ps and /QSM/bcsfig6.p

    Study of J\psi decaying into \omega p \bar p

    Full text link
    The decay J/ψωppˉJ/\psi \to \omega p \bar p is studied using a 5.8×1075.8 \times 10^7 J/ψJ/\psi event sample accumulated with the BES II detector at the Beijing electron-positron collider. The decay branching fraction is measured to be B(J/ψωppˉ)=(9.8±0.3±1.4)×104B(J/\psi \to \omega p \bar p)=(9.8\pm 0.3\pm 1.4)\times 10^{-4}. No significant enhancement near the ppˉp\bar p mass threshold is observed, and an upper limit of B(J/ψωX(1860))B(X(1860)ppˉ)B(J/\psi \to \omega X(1860))B(X(1860)\to p\bar p) <1.5×105< 1.5 \times 10^{-5} is determined at the 95% confidence level, where X(1860) designates the near-threshold enhancement seen in the ppˉp\bar p mass spectrum in J/ψγppˉJ/\psi \to \gamma p \bar p decays.Comment: 5 pages, 4 figure

    Prospects for e+e- physics at Frascati between the phi and the psi

    Get PDF
    We present a detailed study, done in the framework of the INFN 2006 Roadmap, of the prospects for e+e- physics at the Frascati National Laboratories. The physics case for an e+e- collider running at high luminosity at the phi resonance energy and also reaching a maximum center of mass energy of 2.5 GeV is discussed, together with the specific aspects of a very high luminosity tau-charm factory. Subjects connected to Kaon decay physics are not discussed here, being part of another INFN Roadmap working group. The significance of the project and the impact on INFN are also discussed. All the documentation related to the activities of the working group can be found in http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table
    corecore