6 research outputs found

    Quantifying the invasiveness of species

    No full text
    The success of invasive species has been explained by two contrasting but non-exclusive views: (i) intrinsic factors make some species inherently good invaders; (ii) species become invasive as a result of extrinsic ecological and genetic influences such as release from natural enemies, hybridization or other novel ecological and evolutionary interactions. These viewpoints are rarely distinguished but hinge on distinct mechanisms leading to different management scenarios. To improve tests of these hypotheses of invasion success we introduce a simple mathematical framework to quantify the invasiveness of species along two axes: (i) interspecific differences in performance among native and introduced species within a region, and (ii) intraspecific differences between populations of a species in its native and introduced ranges. Applying these equations to a sample dataset of occurrences of 1,416 plant species across Europe, Argentina, and South Africa, we found that many species are common in their native range but become rare following introduction; only a few introduced species become more common. Biogeographical factors limiting spread (e.g. biotic resistance, time of invasion) therefore appear more common than those promoting invasion (e.g. enemy release). Invasiveness, as measured by occurrence data, is better explained by inter-specific variation in invasion potential than biogeographical changes in performance. We discuss how applying these comparisons to more detailed performance data would improve hypothesis testing in invasion biology and potentially lead to more efficient management strategies

    Expert opinion on extinction risk and climate change adaptation for biodiversity

    No full text
    Abstract Despite projections of biodiversity loss and proposed adaptations to climate change, few data exist on the feasibility and effectiveness of adaptation strategies in minimizing biodiversity loss. Given the urgent need for action, scientific experts can fill critical information gaps by providing rapid and discerning risk assessment. A survey of 2,329 biodiversity experts projects, on average, that 9.5% of species will become extinct due to climate change within the next 100 years. This average projection is low relative to previously published values but substantial in absolute terms, because it amounts to a loss of hundreds of thousands of species over the next century. The average projection increases to 21% when experts are asked to estimate the percentage of species that will become extinct within the next 100 years due to climate change in combination with other causes. More than three-quarters of respondents reported being uncertain about their extinction estimates. A majority of experts preferred protected areas or corridors to reduce extinction risk but identified ex situ conservation and no intervention as the most feasible strategies. Experts also suggest that managed relocation of species, a particular adaptation strategy, is justifiable and effective in some situations but not others. Justifiable circumstances include the prevention of species extinction and overcoming human-made barriers to dispersal, and while experts are divided on the potential effectiveness of managed relocation for most taxonomic groups, higher percentages predict it effective for woody plants, terrestrial insects, and mammals. Most experts are open to the potential benefits of managed relocation but are concerned about unintended harmful consequences, particularly putting non-target species at risk of extinction. On balance, published biodiversity scientists feel that managed relocation, despite controversy about it, can be part of the conservation adaptation portfolio

    Quantifying the invasiveness of species

    No full text
    The success of invasive species has been explained by two contrasting but non-exclusive views: (i) intrinsic factors make some species inherently good invaders; (ii) species become invasive as a result of extrinsic ecological and genetic influences such as release from natural enemies, hybridization or other novel ecological and evolutionary interactions. These viewpoints are rarely distinguished but hinge on distinct mechanisms leading to different management scenarios. To improve tests of these hypotheses of invasion success we introduce a simple mathematical framework to quantify the invasiveness of species along two axes: (i) interspecific differences in performance among native and introduced species within a region, and (ii) intraspecific differences between populations of a species in its native and introduced ranges. Applying these equations to a sample dataset of occurrences of 1,416 plant species across Europe, Argentina, and South Africa, we found that many species are common in their native range but become rare following introduction; only a few introduced species become more common. Biogeographical factors limiting spread (e.g. biotic resistance, time of invasion) therefore appear more common than those promoting invasion (e.g. enemy release). Invasiveness, as measured by occurrence data, is better explained by inter-specific variation in invasion potential than biogeographical changes in performance. We discuss how applying these comparisons to more detailed performance data would improve hypothesis testing in invasion biology and potentially lead to more efficient management strategies

    Quantifying the invasiveness of species

    Get PDF
    The success of invasive species has been explained by two contrasting but non-exclusive views: (i) intrinsic factors make some species inherently good invaders; (ii) species become invasive as a result of extrinsic ecological and genetic influences such as release from natural enemies, hybridization or other novel ecological and evolutionary interactions. These viewpoints are rarely distinguished but hinge on distinct mechanisms leading to different management scenarios. To improve tests of these hypotheses of invasion success we introduce a simple mathematical framework to quantify the invasiveness of species along two axes: (i) interspecific differences in performance among native and introduced species within a region, and (ii) intraspecific differences between populations of a species in its native and introduced ranges. Applying these equations to a sample dataset of occurrences of 1,416 plant species across Europe, Argentina, and South Africa, we found that many species are common in their native range but become rare following introduction; only a few introduced species become more common. Biogeographical factors limiting spread (e.g. biotic resistance, time of invasion) therefore appear more common than those promoting invasion (e.g. enemy release). Invasiveness, as measured by occurrence data, is better explained by inter-specific variation in invasion potential than biogeographical changes in performance. We discuss how applying these comparisons to more detailed performance data would improve hypothesis testing in invasion biology and potentially lead to more efficient management strategies

    The Fragile Menagerie: Biodiversity Loss, Climate Change, and the Law

    No full text
    corecore