105 research outputs found

    Biallelic KITLG variants lead to a distinct spectrum of hypomelanosis and sensorineural hearing loss

    Get PDF
    BACKGROUND: Pathogenic variants in KITLG, a crucial protein involved in pigmentation and neural crest cell migration, cause non-syndromic hearing loss, Waardenburg syndrome type 2, familial progressive hyperpigmentation and familial progressive hyper- and hypopigmentation, all of which are inherited in an autosomal dominant manner. OBJECTIVES: To describe the genotypic and clinical spectrum of biallelic KITLG-variants. METHODS: We used a genotype-first approach through the GeneMatcher data sharing platform to collect individuals with biallelic KITLG variants and reviewed the literature for overlapping reports. RESULTS: We describe the first case series with biallelic KITLG variants; we expand the known hypomelanosis spectrum to include a 'sock-and-glove-like', symmetric distribution, progressive repigmentation and generalized hypomelanosis. We speculate that KITLG biallelic loss-of-function variants cause generalized hypomelanosis, whilst variants with residual function lead to a variable auditory-pigmentary disorder mostly reminiscent of Waardenburg syndrome type 2 or piebaldism. CONCLUSIONS: We provide consolidating evidence that biallelic KITLG variants cause a distinct auditory-pigmentary disorder. We evidence a significant clinical variability, similar to the one previously observed in KIT-related piebaldism

    Bi-allelic mutation of CTNNB1 causes a severe form of syndromic microphthalmia, persistent foetal vasculature and vitreoretinal dysplasia

    Get PDF
    Background Inherited vitreoretinopathies arise as a consequence of congenital retinal vascularisation abnormalities. They represent a phenotypically and genetically heterogeneous group of disorders that can have a major impact on vision. Several genes encoding proteins and effectors of the canonical Wnt/β-catenin pathway have been associated and precise diagnosis, although difficult, is essential for proper clinical management including syndrome specific management where appropriate. This work aimed to investigate the molecular basis of disease in a single proband born to consanguineous parents, who presented with microphthalmia, persistent foetal vasculature, posterior lens vacuoles, vitreoretinal dysplasia, microcephaly, hypotelorism and global developmental delay, and was registered severely visually impaired by 5 months of age. Methods Extensive genomic pre-screening, including microarray comparative genomic hybridisation and sequencing of a 114 gene panel associated with cataract and congenital ophthalmic disorders was conducted by an accredited clinical laboratory. Whole exome sequencing (WES) was undertaken on a research basis and in vitro TOPflash transcriptional reporter assay was utilised to assess the impact of the putative causal variant. Results In the proband, WES revealed a novel, likely pathogenic homozygous mutation in the cadherin-associated protein beta-1 gene (CTNNB1), c.884C>G; p.(Ala295Gly), which encodes a co-effector molecule of the Wnt/β-catenin pathway. The proband’s parents were shown to be heterozygous carriers but ophthalmic examination did not detect any abnormalities. Functional assessment of the missense variant demonstrated significant reduction of β-catenin activity. Conclusions This is the first report of a biallelic disease-causing variation in CTNNB1. We conclude that this biallelic, transcriptional inactivating mutation of CTNNB1 causes a severe, syndromic form of microphthalmia, persistent foetal vasculature and vitreoretinal dysplasia that results in serious visual loss in infancy

    Short amplicon reverse transcription-polymerase chain reaction detects aberrant splicing in genes with low expression in blood missed by ribonucleic acid sequencing analysis for clinical diagnosis.

    Get PDF
    Use of blood RNA sequencing (RNA-seq) as a splicing analysis tool for clinical interpretation of variants of uncertain significance (VUSs) found via whole-genome and exome sequencing can be difficult for genes that have low expression in the blood due to insufficient read count coverage aligned to specific genes of interest. Here, we present a short amplicon reverse transcription-polymerase chain reaction(RT-PCR) for the detection of genes with low blood expression. Short amplicon RT-PCR, is designed to span three exons where an exon harboring a variant is flanked by one upstream and one downstream exon. We tested short amplicon RT-PCRs for genes that have median transcripts per million (TPM) values less than one according to the genotype-tissue expression database. Median TPM values of genes analyzed in this study are SYN1 = 0.8549, COL1A1 = 0.6275, TCF4 = 0.4009, DSP = .2894, TTN = 0.2851, COL5A2 = 0.1036, TERT = 0.04452, NTRK2 = 0.0344, ABCA4 = 0.00744, PRPH = 0, and WT1 = 0. All these genes show insufficient exon-spanning read coverage in our RNA-seq data to allow splicing analysis. We successfully detected all genes tested except PRPH and WT1. Aberrant splicing was detected in SYN1, TCF4, NTRK2, TTN, and TERT VUSs. Therefore, our results show short amplicon RT-PCR is a useful alternative for the analysis of splicing events in genes with low TPM in blood RNA for clinical diagnostics

    SMAD6 variants in craniosynostosis : genotype and phenotype evaluation

    Get PDF
    PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism near BMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure

    A standard of care for individuals with PIK3CA ‐related disorders: an international expert consensus statement

    Get PDF
    Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge

    SMAD6 variants in craniosynostosis: genotype and phenotype evaluation

    Get PDF
    Purpose: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism near BMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantl

    Enabling global clinical collaborations on identifiable patient data: The Minerva Initiative

    Get PDF
    The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health

    Mutation spectrum of MLL2 in a cohort of kabuki syndrome patients

    Get PDF
    ABSTRACT: BACKGROUND: Kabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause. METHODS: Genomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools. RESULTS: We identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site. CONCLUSIONS: This study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management
    corecore