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ABSTRACT
Purpose The increased adoption of genomic strategies 
in the clinic makes it imperative for diagnostic 
laboratories to improve the efficiency of variant 
interpretation. Clinical exome sequencing (CES) is 
becoming a valuable diagnostic tool, capable of meeting 
the diagnostic demand imposed by the vast array of 
different rare monogenic disorders. We have assessed a 
clinician- led and phenotype- based approach for virtual 
gene panel generation for analysis of targeted CES in 
patients with rare disease in a single institution.
Methods Retrospective survey of 400 consecutive 
cases presumed by clinicians to have rare monogenic 
disorders, referred on singleton basis for targeted CES. 
We evaluated diagnostic yield and variant workload to 
characterise the usefulness of a clinician- led approach 
for generation of virtual gene panels that can incorporate 
up to three different phenotype- driven gene selection 
methods.
Results Abnormalities of the nervous system (54.5%), 
including intellectual disability, head and neck (19%), 
skeletal system (16%), ear (15%) and eye (15%) were 
the most common clinical features reported in referrals. 
Combined phenotype- driven strategies for virtual 
gene panel generation were used in 57% of cases. On 
average, 7.3 variants (median=5) per case were retained 
for clinical interpretation. The overall diagnostic rate of 
proband- only CES using personalised phenotype- driven 
virtual gene panels was 24%.
Conclusions Our results show that personalised 
virtual gene panels are a cost- effective approach for 
variant analysis of CES, maintaining diagnostic yield 
and optimising the use of resources for clinical genomic 
sequencing in the clinic.

INTRODUCTION
Exome (ES) and genome sequencing (GS) 
approaches are now commonplace in healthcare 
settings, enabling the identification and assess-
ment of a broad spectrum of variants which may 

be causative of monogenic disorders. Clinical ES 
and GS strategies have demonstrated advantages 
over other diagnostic testing techniques, as they 
are capable of identifying previously undetected 
pathogenic variants, including those in genes not 
previously surveyed through custom gene panel or 
single gene approaches. Such findings can improve 
diagnostic yields and thereby guide appropriate 
patient management and therapeutic options. The 
diagnostic yield of clinical ES approaches is wide- 
ranging with reported rates between 20% and 
50%,1–9 impacted by cohort size and clinical char-
acteristics. ES approaches have been shown to have 
reduced diagnostic yield compared with custom 
gene panel approaches dependent on patient 
recruitment criteria.10

The speed of variant interpretation remains 
an important challenge in the adoption of NGS 
as a clinical diagnostic test. NGS gene panels 
and, in particular, ES and GS generate large and 
complex volumes of data. The number of poten-
tially pathogenic variants identified through ES 
and GS place a considerable burden on accredited 
medical genomic services in analysing and inter-
preting variants within a clinical setting, which 
may reduce accuracy and efficiency. The workload 
of interpretation is an important consideration 
when implementing genomic sequencing in the 
clinic. Cost- effective and accurate interpretation of 
genetic variants is fundamental to the widespread 
implementation of ES and GS in clinical settings, 
but currently, techniques to address this challenge 
in clinical contexts has been poorly assessed in 
current diagnostic practice.

In this study, we examined the use of a clini-
cian- led and phenotype- driven approach to semi- 
automatic generation of personalised virtual gene 
panels. We evaluated the impact of this approach on 
diagnostic yield and interpretative workload, in the 
context of diagnosis of patients with presumed rare 
monogenic disease in an accredited clinical genomic 
medicine service.
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METHODS
Cohort description and virtual gene panel generation
We conducted a retrospective survey of clinical exome variant 
results from patients with rare disease undergoing CES from 
October 2016 to January 2020. All CES data analyses and results 
described in this study were undertaken in a UK NHS Accredita-
tion Service Clinical Pathology Accredited Medical Laboratory. 
Patients or guardians specifically consented for CES data analysis 
and data sharing as part of the diagnostic investigations and for 
results audit purposes. Written informed consent was obtained 
from patients or guardians explaining benefits and risks of CES 
testing.

Patients were referred by consultant clinical geneticists using 
a web- based referral system (WRS) to capture patient demo-
graphics, clinical features and/or Human Phenotype Ontology 
(HPO) terms to facilitate semi- automated generation of person-
alised virtual gene panels. Information entered into the WRS 
was used to create virtual gene panels using one or more of the 
following methods:

 ► Curated gene- disease panels: selection of curated gene lists 
from Genomics England PanelApp11 12 and/or previous UK 
Genetic Testing Network panels.13

 ► HPO- based gene selection: selection of HPO terms14 gener-
ates a list of candidate genes from OMIM15 and Orphanet.16

 ► Customised selection of genes specified by clinicians, based 
on their clinical hypotheses.

HPO- based gene lists are created automatically on the WRS 
through a custom algorithm developed to use HPO terms intel-
ligently, allowing additional terms entered to increase speci-
ficity of the panel rather than simply increasing in size (online 
supplemental methods figure S2). The inclusion of genes that 
are present on the American College of Medical Genetics and 
Genomics (ACMG) incidental findings list17 was performed 
at the discretion of the clinician, with prior consent from the 
patient accordingly. Genes with low predicted coverage were 
flagged to the referrer during the submission process.

Targeted clinical exome sequencing
Sequencing, read mapping and variant calling
DNA was isolated from peripheral blood samples (n=393) 
and umbilical cord samples (n=7) and CES conducted using a 
custom- designed Agilent SureSelect XT Focused Exome capture 
library and the Illumina NextSeq 500 sequencing system with 75 
bp paired end reads. Sequencing was conducted to a mean depth 
of 112 with >97% bases covered at 20× read depth. Reads 
generated by the Illumina NextSeq were aligned with BWA- 
MEM (V.0.6.2) to the human genome build GRCh37(hg19), 
with local realignment performed by ABRA (V.0.96). Variant 
calling was subsequently carried out using SamTools (V.0.1.18/
gcc-4.4.6) for SNPs and small indels and Pindel (V.0.2.4.t) for 
indels >5 bp.

Variant prioritisation and pathogenicity evaluation
Sample- specific genome alignment (.BAM) and variant (.VCF) 
files were analysed using Golden Helix VarSeq software 
(V.1.4.4).18 The VarSeq software interface allows users to 
customise configurable workflows for variant prioritisation. 
Annotation of variants was performed according to RefSeq: 
NCBI RefSeq Annotation Release 10519 using the most clinically 
relevant GRCh37(hg19) transcript. The selection of the clinically 
relevant transcript by VarSeq is typically based on ACMG guide-
lines and ClinVar’s algorithm for transcript selection. Only vari-
ants present within coding exons and +10 bp of the splice site 

junction were retained for analysis. Missense variants were anal-
ysed using a number of in silico predictors (eg, dbNSFP Function 
Predictions 3.0,20 GHI (SIFT),21 PolyPhen-2,22 MutationTaster 
Mutation Assessor, FATHMM). Putative splicing variants were 
analysed using Alamut V.2.4.5, dbscSNV Splice Altering Predic-
tions 1.1, GHI and SPIDEX.23 Rare, high- quality, high- impact 
(genotype quality >20, read depth >10) single nucleotide vari-
ants and small indels with alternative allele frequency (AAF) 
<0.001 (gnomAD) were filtered. Variants listed as pathogenic 
or likely pathogenic on NCBI ClinVar were retained if present 
at 2% AAF. An example of our variant filtering is illustrated in 
online supplemental methods figure S1.

Filtered variants were analysed independently by two regis-
tered clinical scientists and classified according to ACMG guide-
lines24 into one of five classes: (i) benign, (ii) likely benign, (iii) 
uncertain significance, (iv) likely pathogenic and (v) pathogenic. 
Variants were validated through Sanger sequencing. Segregation 
studies in parents of patients with possible compound hetero-
zygous variants performed. Where needed, cases are reviewed 
at internal multidisciplinary team meetings or through internal 
communication between the clinical scientist and the clinical 
geneticist.

Retrospective evaluation of clinical characteristics and 
diagnostic rate of CES results
Clinical characteristics of the cohort were determined using 
the information available in their referrals (HPO terms, clinical 
descriptions). We used the phenotypic abnormality subontology 
of the HPO to classify the clinical characteristics of the cohort.

To determine the diagnostic rate, CES results were categorised 
as described in box 1. We analysed the diagnostic rate reported 
in relation to the main clinical referral indications for referral 
and the methods used for virtual gene panel generation.

Quantification of variant workload
We quantified the number of variants prioritised per sample. 
We then removed the virtual gene panel file and determined the 
number of variants obtained without the virtual gene panel and 
prioritising loss- of- function (LOF) and missense PP3 classified- 
variants (ACMG- AMP system24) . A comparison was made 
between variant workloads with and without use of virtual gene 
panels in order to determine the impact of using virtual gene 
panels in the clinical scientist’s interpretative workload.

Statistical methods
Descriptive statistics (mean, median and SD) were used for 
phenotypic descriptions, virtual gene panel size and variant 
workload. One- sample binomial test was used to determine 
gender differences, χ2 test was used for categorical variables 
where applicable, Spearman’s rank correlation was used to 
determine the relationship between variant workload and total 
number of genes included in virtual gene panels. Statistical 
significance was denoted as p<0.05. R V.3.5 and IBM SPSS V.23 
were used for analysis.

RESULTS
Clinical characteristics of referrals
A total of 400 patients with presumed rare disorders were 
referred as singletons from October 2016 to December 2019 
for diagnostic targeted CES. A total of 273 cases were under age 
18 years at the time of referral (69%, 273/394). Of these, 60% 
(164/273) were aged 5 years or less. Six referrals came from fetal 
samples. No significant difference in gender ratio was found 
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(46.7% female vs 53.3% male; p=0.208, one sample binomial 
test).

Referred cases presented with a wide range of phenotypic 
characteristics. No significant difference was observed between 
the number of cases referred with one organ or system affected 
(50.5%, 202/400) in comparison to those presenting phenotypic 
abnormalities affecting two or more organs (49.5%, 198/400). 
Phenotypic abnormalities of the nervous system were present 
in more than half of the referrals (54.5%, n=218/400) (online 
supplemental figure 1). Of these, intellectual disability and/or 
developmental delay was present in 43.1% (94/218). Other 
major phenotypic abnormality categories were described by 
terms denoting conditions in head and neck (19%, 74/400), the 
skeletal system (16%, 65/400), ear (15%, 59/400), eye (15%, 
58/400), and growth abnormalities (13%, 51/400).

Virtual gene panel generation
In more than half of the patients (57%, 226/400), virtual gene 
panels were generated by the clinical referrer combining gene 
selection methods. The use of curated panels (eg, PanelApp), 
either as a single method or in combination with one or more 
method(s), was the most common approach (73%, 291/400) 
followed by HPO- based gene lists (56%, 223/400) (online 
supplemental figure 2A). The combined selection of HPO- based 
gene lists and curated panels was mostly used in cases with two 
or more organs or systems affected. However, no significant 
difference was observed in the utilisation of a specific virtual 
gene panel method for the main clinical indications (ie, abnor-
malities in nervous system, ear, eye, head or neck, skeletal system 

and musculature abnormalities; χ2 p=0.28,online supplemental 
figure 2B).

Virtual gene panels included a median of 107 genes (mean 233, 
range 1–1380, SD 296, 95% CI 204.30 to 262.49). Combining 
gene selection approaches generated larger virtual gene panels 
(n=226, median=165.5 genes) than those generated by one 
approach (n=174, median=64 genes, online supplemental 
figure 3A) (p<0.05, one sample Wilcoxon signed- rank test). 
When examining single methods, curated panels contained more 
genes in comparison to single HPO- based selection (p=0.0011, 
Wilcoxon signed- rank test). Virtual gene panels were signifi-
cantly larger for cases with presence of more than two organs 
or systems affected (n=198, median 142 genes) in comparison 
to those with phenotypic abnormalities affecting only one single 
organ/system (p<0.05, Wilcoxon signed- rank test).

Impact of virtual gene panels on reduction of variant 
workload
The average number of filtered variants for interpretation per 
sample was 7.38 (median=5 variants), ranging from 0 to 61 
variants (95% CI 6.58 to 8.18, online supplemental figure 3B). 
A significant correlation was observed between panel size and 
variant workload (r2=0.76, p<0.05 Spearman’s rank, online 
supplemental figure 4). We sought to compare the reported 
variant workload after using virtual gene panels with the variant 
volume produced by filtering LOF and missense with 4/6 in silico 
evidence of pathogenicity without phenotype- based targets. The 
latter prioritisation method led to an average of 45.3 variants, 
within a range between 18 and 125 (95% CI 44.01 to 46.68), 
showing a significant difference when compared with the variant 
workload obtained by using virtual gene panels (p<0.0001, 
unpaired t- test, figure 1).

Molecular results and diagnostic rate
A total of 180 variants across the 400 clinical exomes were 
identified and assigned ACMG classification scores24 (online 
supplemental table 1). Pathogenic and likely pathogenic vari-
ants accounted for 62.2% of these (112/180). Sixty per cent 
were LOF (67/112) and 40% were missense (45/112). Only one 
variant was reported synonymous. Novel likely pathogenic and/
or pathogenic variants at the time of original analysis accounted 
for 32.1% (36/112). Variants of uncertain significance accounted 
for 37.2% (68/180).

Overall, 24% of the patients received a confirmed and/or 
possibly confirmed molecular diagnosis (96/400). Seven addi-
tional cases (1.75%) had a genetic finding reported that confirmed 
only part of the phenotype—in one case with suspected digenic 
inheritance. The inclusion of these cases would increase the 
diagnostic rate to 26.75%. Findings associated with autosomal 
recessive inheritance were reported in 59.3% (58/96), autosomal 
dominant in 30% (32/96), X linked dominant in 5.2% (5/96) 
and X linked recessive inheritance in 1% (1/96). In two cases, 
likely pathogenic variants were identified in genes that have 
been associated with autosomal dominant and autosomal reces-
sive inheritance. Single heterozygous variants in genes associated 
with autosomal recessive inheritance were identified in 2.5% of 
the cohort (10/400); these were reported in cases with presumed 
autosomal recessive conditions.

Variants of unknown significance identified in clinically 
relevant genes were considered for diagnosis in specific cases. 
Ten possibly confirmed cases were reported with a variant of 
unknown significance (VUS) in potential compound heterozy-
gous state with a likely pathogenic or pathogenic variant. Other 

Box 1 Categorisation of CEs diagnosis

Diagnosis confirmed
In a clinically relevant gene, the presence of either:
1. A heterozygous class 4 or 5 variant in a dominant condition,
2. A homozygous/hemizygous class 4 or 5 variant in a recessive 

condition or
3. Two class 4 or 5 variants in the same gene in a recessive 

condition (potential compound heterozygote).

Diagnosis possibly confirmed
In a clinically relevant gene, the presence of either:
1. A homozygous/hemizygous class 3 variant* in a recessive 

condition,
2. A class 3 variant* and a class 4 or 5 variant in the same gene 

in a recessive condition (potential compound heterozygote) or
3. A heterozygous class 3 variant* in a dominant condition 

where parental studies suggest a possible de novo.

Diagnosis not confirmed
In a clinically relevant gene, the presence of either:
1. Any heterozygous class 3, 4 or 5 variant in a recessive 

condition,
2. A heterozygous class 3 variant* in a dominant condition 

where further parental testing has not been performed or
3. No plausibly causative variant identified.

*Report of variants of uncertain significance where further testing 
could be considered to reclassify the variant as likely pathogenic, as per 
the Association for Clinical Genomic Science Best Practice Guidelines 
for variant classification and interpretation in UK diagnostic genetic 
laboratories performing testing for rare disease. Variants considered to 
be causative of, or contributory to, the patient’s clinical presentation 
were confirmed by Sanger sequencing prior to reporting.
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nine possibly confirmed cases were reported with homozygous 
variants for disorders with autosomal recessive inheritance. Four 
cases were reported with confirmed de novo VUS in patients with 
autosomal dominant disorders. Cases with a reported heterozy-
gous class 3 in an autosomal dominant condition where further 
parental testing has not been performed were not considered 
as plausible confirmation of diagnosis. No incidental findings 
were identified or reported, as expected by the gene selection 
approach.

The diagnostic rate for the most common phenotypic cate-
gories ranged between 21.5% and 32.7% (online supplemental 
figure 1B). No differences were observed in diagnostic yield 
when comparing the rate across the different methods for virtual 
gene panel generation (p=0.347) (online supplemental figure 5).

DISCUSSION
Identifying approaches to efficiently sift variants from ES and 
GS analyses for clinical interpretation can have considerable 
benefit in rationalising workstream flows in clinical diagnostic 
laboratories. Phenotype- driven approaches have become widely 
available tools for variant25–27 and gene prioritisation28 29 of 
genomic sequencing data. Therefore, incorporating detailed 
clinical phenotyping alongside CES and CGS offers an opportu-
nity to develop personalised testing strategies for patients with 
rare disease through virtual gene panels.

Evidence has shown that CES using virtual gene panels can 
be an effective option for investigating individuals with rare 
Mendelian monogenic disorders.29 30 In this study, we show that 
the availability of different phenotype- based approaches to gene 
selection can be beneficial for the design of personalised virtual 
gene panels. This is consistent with the increased sensitivity 
reported by Maver et al using phenotype- based virtual gene 
panels.29 Notably, each virtual gene panel method is characterised 

by a set of features that can complement one another. Curated 
disease- gene panels (eg, PanelApp) are comprehensive, expertly 
curated evidence- based lists of genes. However, depending on 
the condition, they may contain genes that are irrelevant to the 
specific patient case. In this case, the sole or concomitant use 
of HPO- based gene selection may produce a more personalised 
selection that can be further improved as gene- disease associa-
tions increase over time.31 32 Cases with atypical or unclear clin-
ical diagnoses may certainly benefit from combined approaches. 
Similarly, clinical acumen can add sensitivity to panel design. 
Offering gene selection options based on different methods or 
algorithms facilitates the clinicians’ choice of the most adequate 
approach for their patients and, if necessary, allows the combina-
tion of methods to increase the probability of inclusion of rele-
vant genes in the panel.

We also show that the use of personalised virtual gene panels 
can increase the efficiency of clinical variant analysis strategies 
without compromising diagnostic yield. Our result is consis-
tent with diagnostic rates reported to date for CES in clinical 
settings.2 4 33 34 The diagnostic rates observed in the main five 
phenotypic categories (online supplemental figure 1) also high-
light the utility of the singleton CES approach in the investi-
gation of a breadth of frequent clinical indications for CES.5 35 
Furthermore, we expect that our diagnostic yield to be further 
improved following the introduction of parallel CNV analysis.36 
This addition would be particularly useful in cases where a 
heterozygous variant was detected in a phenotypically relevant 
recessive gene (3%, 10/400), where a second variant in trans is 
suspected beyond the detection of our current approach may be 
suspected.

Understanding the efficiency of variant analysis strategies is 
of paramount importance in clinical laboratories. A number of 
variant filtering and/or ranking strategies are available.25 26 37 

Figure 1 Comparison of variants retained for clinical interpretation between the use of personalised virtual gene panels and prioritisation of loss- of- 
function (LOF) and missense PP3 variants 20 without phenotype- based virtual gene panels.
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Here, we show that variant analysis within a personalised gene 
selection is both a sensitive and more efficient technique to 
apply to CES datasets. This is evidenced by the reduced variant 
workload produced by using personalised virtual gene panels 
(median=5 variants) in comparison to the total variants retained 
after using the same filtering algorithm without virtual gene 
panels and prioritising LOF and missense variants with ACMG- 
criterion PP3 (median=43 variants). Our reported number of 
filtered variants per case (mean=7.38, median=5) is notice-
ably lower than the average reported in some studies that use 
phenotype- driven gene selection methods for ES analysis. 
Kernohan et al identified a minimum average variant burden 
ranging from 42 to 46 variants using Radboudumc and HPO- 
based panels in singleton- ES cases, respectively.38 Bergant et al 
reported a total of 91 coding variants per case after initial ES 
analysis.39 When searching for characteristics of our variant 
prioritisation workflow that could influence variant burden, we 
found that retaining very low frequency variants that occur in 
<0.1% of the population is an additional important factor for 
reduction of variant workload. Our findings suggest that the 
flexibility to choose the most adequate gene selection approach 
for virtual gene panel generation, in addition to filtering very low 
frequency variants, is an effective strategy that offers a deliver-
able variant analysis burden and maintains diagnostic efficacy in 
the clinical setting. Furthermore, more than half of the variants 
detected in our study were LOF and/or previously reported vari-
ants at the time of original analysis. It is possible to suggest that 
automated prioritisation of these variants could further expedite 
the variant sifting process. Future work incorporating variant 
zygosity and disease inheritance patterns, such as that developed 
by the Transforming Genetic Medicine Initiative40 may further 
increase the sensitivity and efficiency of CES methodologies.

In summary, the utilisation of personalised virtual gene panels 
represents a sustainable approach for targeted clinical exome 
sequencing in patients with rare disease. It can reduce interpre-
tative variant workload and preserve diagnostic yield and poten-
tially maintain a deliverable timeframe for clinical laboratories. 
Importantly, the use of different phenotype- based strategies for 
gene selection plays a key role for optimal gene selection. In 
addition, semi- automated prioritisation of previously reported 
variants in addition to LOF variants could further expedite inter-
pretative workload. These strategies altogether can potentially 
free up time for the investigation of more complex cases and 
to increase analysis throughput. The optimisation of approaches 
and resources for data analysis will allow a deeper adoption of 
genomic strategies as routine practice for personalised medicine 
in the clinic.
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