190 research outputs found

    The Gingival Fibromatoses

    Get PDF

    Two patients with chromosome 22q11.2 deletion presenting with childhood obesity and hyperphagia

    Get PDF
    Chromosome 22q11.2 deletion syndrome is a clinically heterogeneous condition of intellectual disability, parathyroid and thyroid hypoplasia, palatal abnormalities, cardiac malformations and psychiatric symptoms. Hyperphagia and childhood obesity is widely reported in Prader-Willi Syndrome (PWS) but there is only one previous report of this presentation in chromosome 22q11.2 deletion syndrome. We describe two further cases of chromosome 22q11.2 deletion syndrome in which hyperphagia and childhood obesity were the presenting features. This may be a manifestation of obsessive behaviour secondary to some of the psychiatric features commonly seen in chromosome 22q11.2 deletion syndrome. Serious complications may result from hyperphagia and childhood obesity therefore early recognition and intervention is crucial. Due to the similar clinical presentation of these two patients to patients with PWS, it is suggested that the hyperphagia seen here should be managed in a similar way to how it is managed in PWS

    Biallelic KITLG variants lead to a distinct spectrum of hypomelanosis and sensorineural hearing loss

    Get PDF
    BACKGROUND: Pathogenic variants in KITLG, a crucial protein involved in pigmentation and neural crest cell migration, cause non-syndromic hearing loss, Waardenburg syndrome type 2, familial progressive hyperpigmentation and familial progressive hyper- and hypopigmentation, all of which are inherited in an autosomal dominant manner. OBJECTIVES: To describe the genotypic and clinical spectrum of biallelic KITLG-variants. METHODS: We used a genotype-first approach through the GeneMatcher data sharing platform to collect individuals with biallelic KITLG variants and reviewed the literature for overlapping reports. RESULTS: We describe the first case series with biallelic KITLG variants; we expand the known hypomelanosis spectrum to include a 'sock-and-glove-like', symmetric distribution, progressive repigmentation and generalized hypomelanosis. We speculate that KITLG biallelic loss-of-function variants cause generalized hypomelanosis, whilst variants with residual function lead to a variable auditory-pigmentary disorder mostly reminiscent of Waardenburg syndrome type 2 or piebaldism. CONCLUSIONS: We provide consolidating evidence that biallelic KITLG variants cause a distinct auditory-pigmentary disorder. We evidence a significant clinical variability, similar to the one previously observed in KIT-related piebaldism

    Bi-allelic mutation of CTNNB1 causes a severe form of syndromic microphthalmia, persistent foetal vasculature and vitreoretinal dysplasia

    Get PDF
    Background Inherited vitreoretinopathies arise as a consequence of congenital retinal vascularisation abnormalities. They represent a phenotypically and genetically heterogeneous group of disorders that can have a major impact on vision. Several genes encoding proteins and effectors of the canonical Wnt/β-catenin pathway have been associated and precise diagnosis, although difficult, is essential for proper clinical management including syndrome specific management where appropriate. This work aimed to investigate the molecular basis of disease in a single proband born to consanguineous parents, who presented with microphthalmia, persistent foetal vasculature, posterior lens vacuoles, vitreoretinal dysplasia, microcephaly, hypotelorism and global developmental delay, and was registered severely visually impaired by 5 months of age. Methods Extensive genomic pre-screening, including microarray comparative genomic hybridisation and sequencing of a 114 gene panel associated with cataract and congenital ophthalmic disorders was conducted by an accredited clinical laboratory. Whole exome sequencing (WES) was undertaken on a research basis and in vitro TOPflash transcriptional reporter assay was utilised to assess the impact of the putative causal variant. Results In the proband, WES revealed a novel, likely pathogenic homozygous mutation in the cadherin-associated protein beta-1 gene (CTNNB1), c.884C>G; p.(Ala295Gly), which encodes a co-effector molecule of the Wnt/β-catenin pathway. The proband’s parents were shown to be heterozygous carriers but ophthalmic examination did not detect any abnormalities. Functional assessment of the missense variant demonstrated significant reduction of β-catenin activity. Conclusions This is the first report of a biallelic disease-causing variation in CTNNB1. We conclude that this biallelic, transcriptional inactivating mutation of CTNNB1 causes a severe, syndromic form of microphthalmia, persistent foetal vasculature and vitreoretinal dysplasia that results in serious visual loss in infancy

    SMAD6 variants in craniosynostosis : genotype and phenotype evaluation

    Get PDF
    PURPOSE: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism near BMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantly modifies the phenotype. METHODS: We performed resequencing of SMAD6 in 795 unsolved patients with any type of craniosynostosis and genotyped rs1884302 in SMAD6-positive individuals and relatives. We examined the inhibitory activity and stability of SMAD6 missense variants. RESULTS: We found 18 (2.3%) different rare damaging SMAD6 variants, with the highest prevalence in metopic synostosis (5.8%) and an 18.3-fold enrichment of loss-of-function variants comparedwith gnomAD data (P < 10-7). Combined with eight additional variants, ≥20/26 were transmitted from an unaffected parent but rs1884302 genotype did not predict phenotype. CONCLUSION: Pathogenic SMAD6 variants substantially increase the risk of both nonsyndromic and syndromic presentations of craniosynostosis, especially metopic synostosis. Functional analysis is important to evaluate missense variants. Genotyping of rs1884302 is not clinically useful. Mechanisms to explain the remarkable diversity of phenotypes associated with SMAD6 variants remain obscure

    A standard of care for individuals with PIK3CA ‐related disorders: an international expert consensus statement

    Get PDF
    Growth promoting variants in PIK3CA cause a spectrum of developmental disorders, depending on the developmental timing of the mutation and tissues involved. These phenotypically heterogeneous entities have been grouped as PIK3CA-Related Overgrowth Spectrum disorders (PROS). Deep sequencing technologies have facilitated detection of low-level mosaic, often necessitating testing of tissues other than blood. Since clinical management practices vary considerably among healthcare professionals and services across different countries, a consensus on management guidelines is needed. Clinical heterogeneity within this spectrum leads to challenges in establishing management recommendations, which must be based on patient-specific considerations. Moreover, as most of these conditions are rare, affected families may lack access to the medical expertise that is needed to help address the multi-system and often complex medical issues seen with PROS. In March 2019, macrocephaly-capillary malformation (M-CM) patient organizations hosted an expert meeting in Manchester, United Kingdom, to help address these challenges with regards to M-CM syndrome. We have expanded the scope of this project to cover PROS and developed this consensus statement on the preferred approach for managing affected individuals based on our current knowledge

    Expanding the genotypic spectrum of TXNL4A variants in Burn‐McKeown syndrome

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-09-06, rev-recd 2021-10-21, accepted 2021-10-23, pub-electronic 2021-11-05Article version: VoRPublication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/N000358/1Funder: Health Education England Genomics Education ProgrammeFunder: Medical Research Council; Id: http://dx.doi.org/10.13039/501100007155; Grant(s): 1916606Funder: National Institute for Health Manchester Biomedical Research Centre; Grant(s): IS‐BRC‐1215‐20007Abstract: The developmental disorder Burn‐McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre‐messenger RNA splicing factor TXNL4A. Most patients have a loss‐of‐function variant in trans with a 34‐base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258‐3C>G) and a type 1 Δ34 promoter deletion. We show the c.258‐3C>G variant and a previously reported c.258‐2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non‐coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation

    SMAD6 variants in craniosynostosis: genotype and phenotype evaluation

    Get PDF
    Purpose: Enrichment of heterozygous missense and truncating SMAD6 variants was previously reported in nonsyndromic sagittal and metopic synostosis, and interaction of SMAD6 variants with a common polymorphism near BMP2 (rs1884302) was proposed to contribute to inconsistent penetrance. We determined the occurrence of SMAD6 variants in all types of craniosynostosis, evaluated the impact of different missense variants on SMAD6 function, and tested independently whether rs1884302 genotype significantl
    • …
    corecore