76 research outputs found

    Engineering and manufacturing of pharmaceutical co-crystals : a review on solvent-free manufacturing technologies

    Get PDF
    Design and synthesis of pharmaceutical cocrystals have received great interest in the recent years. Cocrystallization of drug substances offer a tremendous opportunity for the development of new drug products with superior physical and pharmacological properties such as solubility, stability, hydroscopicity, dissolution rates and bioavailability. It is now possible to engineer and develop cocrystals via ‘green chemistry' and environmental friendly approaches such as solid-state synthesis in the absence of organic solvents. In addition, significant efforts are placed on computational screening, cocrystal manufacturing in a continuous manner and real-time monitoring for quality purposes by using various analytical tools. Pharmaceutical cocrystals are not fully exploited yet and there is a lot of ground to cover before they can be successfully utilized as medical products

    3D printed microneedles for insulin skin delivery

    Get PDF
    In this study, polymeric microneedle patches were fabricated by stereolithography, a 3D printing technique, for the transdermal delivery of insulin. A biocompatible resin was photopolymerized to build pyramid and cone microneedle designs followed by inkjet print coating of insulin formulations. Trehalose, mannitol and xylitol were used as drug carriers with the aim to preserve insulin integrity and stability but also to facilitate rapid release rates. Circular dichroism and Raman analysis demonstrated that all carriers maintained the native form of insulin, with xylitol presenting the best performance. Franz cell release studies were used for in vitro determination of insulin release rates in porcine skin. Insulin was released rapidly within 30 min irrespectively of the microneedle design. 3D printing was proved an effective technology for the fabrication of biocompatible and scalable microneedle patches

    Evaluation of sesamum gum as an excipient in matrix tablets

    Get PDF
    In developing countries modern medicines are often beyond the affordability of the majority of the population. This is due to the reliance on expensive imported raw materials despite the abundance of natural resources which could provide an equivalent or even an improved function. The aim of this study was to investigate the potential of sesamum gum (SG) extracted from the leaves of Sesamum radiatum (readily cultivated in sub-Saharan Africa) as a matrix former. Directly compressed matrix tablets were prepared from the extract and compared with similar matrices of HPMC (K4M) using theophylline as a model water soluble drug. The compaction, swelling, erosion and drug release from the matrices were studied in deionized water, 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using USP apparatus II. The data from the swelling, erosion and drug release studies were also fitted into the respective mathematical models. Results showed that the matrices underwent a combination of swelling and erosion, with the swelling action being controlled by the rate of hydration in the medium. SG also controlled the release of theophylline similar to the HPMC and therefore may have use as an alternative excipient in regions where Sesamum radiatum can be easily cultivated
    corecore