161 research outputs found

    Altered vaccine-induced immunity in children with Dravet syndrome

    Get PDF
    International audienceDravet syndrome (DS) is a refractory epileptic syndrome. Vaccination is the trigger of the first seizure in about 50% of cases. Fever remains a trigger of seizures during the course of the disease. We compared ex vivo cytokine responses to a combined aluminium-adjuvanted vaccine of children with DS to sex-and age-matched heathy children. Using ex vivo cytokine responses of peripheral-blood mononuclear cells and monocytes, we found that vaccine responsiveness is biased toward a proinflammatory profile in DS with a M1 phenotype of monocytes. We provide new insight into immune mechanisms associated with DS that might guide research for the development of new immunotherapeutic agents in this epilepsy syndrome

    A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases

    Get PDF
    Background: The signalling mechanisms involved in the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the hippocampus are poorly understood. Numerous studies have presented evidence both for and against a variety of second messengers systems being involved in LTD induction. Here we provide the first systematic investigation of the involvement of serine/threonine (ser/thr) protein kinases in NMDAR-LTD, using whole-cell recordings from CA1 pyramidal neurons. Results: Using a panel of 23 inhibitors individually loaded into the recorded neurons, we can discount the involvement of at least 57 kinases, including PKA, PKC, CaMKII, p38 MAPK and DYRK1A. However, we have been able to confirm a role for the ser/thr protein kinase, glycogen synthase kinase 3 (GSK-3). Conclusion: The present study is the first to investigate the role of 58 ser/thr protein kinases in LTD in the same study. Of these 58 protein kinases, we have found evidence for the involvement of only one, GSK-3, in LTD

    The Somatostatin 2A Receptor Is Enriched in Migrating Neurons during Rat and Human Brain Development and Stimulates Migration and Axonal Outgrowth

    Get PDF
    The neuropeptide somatostatin has been suggested to play an important role during neuronal development in addition to its established modulatory impact on neuroendocrine, motor and cognitive functions in adults. Although six somatostatin G protein-coupled receptors have been discovered, little is known about their distribution and function in the developing mammalian brain. In this study, we have first characterized the developmental expression of the somatostatin receptor sst2A, the subtype found most prominently in the adult rat and human nervous system. In the rat, the sst2A receptor expression appears as early as E12 and is restricted to post-mitotic neuronal populations leaving the ventricular zone. From E12 on, migrating neuronal populations immunopositive for the receptor were observed in numerous developing regions including the cerebral cortex, hippocampus and ganglionic eminences. Intense but transient immunoreactive signals were detected in the deep part of the external granular layer of the cerebellum, the rostral migratory stream and in tyrosine hydroxylase- and serotonin- positive neurons and axons. Activation of the sst2A receptor in vitro in rat cerebellar microexplants and primary hippocampal neurons revealed stimulatory effects on neuronal migration and axonal growth, respectively. In the human cortex, receptor immunoreactivity was located in the preplate at early development stages (8 gestational weeks) and was enriched to the outer part of the germinal zone at later stages. In the cerebellum, the deep part of the external granular layer was strongly immunoreactive at 19 gestational weeks, similar to the finding in rodents. In addition, migrating granule cells in the internal granular layer were also receptor-positive. Together, theses results strongly suggest that the somatostatin sst2A receptor participates in the development and maturation of specific neuronal populations during rat and human brain ontogenesis

    Endocytosis of Activated Muscarinic m2 Receptor (m2R) in Live Mouse Hippocampal Neurons Occurs via a Clathrin-Dependent Pathway

    Get PDF
    Our aim was to examine the dynamics of the muscarinic m2 receptor (m2R), a G-protein coupled receptor (GPCR), after agonist activation in living hippocampal neurons, and especially clathrin dependency endocytosis. We have previously shown that the m2R undergoes agonist-induced internalization in vivo. However, the nature of the endocytotic pathway used by m2R after activation is still unknown in living neurons. Using live cell imaging and quantitative analyses, we have monitored the effect of stimulation on the fate of the membrane-bound m2R and on its redistribution in intraneuronal compartments. Shortly (6 min) after activation, m2R is internalized into clathrin immunopositive structures. Furthermore, after clathrin-dependent endocytosis, m2R associates with early and late endosomes and with subcellular organelles involved in degradation. Together, these results provide, for the first time, a description of m2R trafficking in living neurons and prove that m2R undergoes clathrin-dependent endocytosis before being degraded

    Somatostatin receptors in GtoPdb v.2023.1

    Get PDF
    Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [98]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [61]

    International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature.

    Get PDF
    Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature

    Potential antiviral effects of pantethine against SARS-CoV-2

    Get PDF
    Abstract SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection.Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome

    Somatostatin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [89]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [56]

    Twenty-first century brain banking. Processing brains for research: the Columbia University methods

    Get PDF
    Carefully categorized postmortem human brains are crucial for research. The lack of generally accepted methods for processing human postmortem brains for research persists. Thus, brain banking is essential; however, it cannot be achieved at the cost of the teaching mission of the academic institution by routing brains away from residency programs, particularly when the autopsy rate is steadily decreasing. A consensus must be reached whereby a brain can be utilizable for diagnosis, research, and teaching. The best diagnostic categorization possible must be secured and the yield of samples for basic investigation maximized. This report focuses on integrated, novel methods currently applied at the New York Brain Bank, Columbia University, New York, which are designed to reach accurate neuropathological diagnosis, optimize the yield of samples, and process fresh-frozen samples suitable for a wide range of modern investigations. The brains donated for research are processed as soon as possible after death. The prosector must have a good command of the neuroanatomy, neuropathology, and the protocol. One half of each brain is immersed in formalin for performing the thorough neuropathologic evaluation, which is combined with the teaching task. The contralateral half is extensively dissected at the fresh state. The anatomical origin of each sample is recorded using the map of Brodmann for the cortical samples. The samples are frozen at −160°C, barcode labeled, and ready for immediate disbursement once categorized diagnostically. A rigorous organization of freezer space, coupled to an electronic tracking system with its attached software, fosters efficient access for retrieval within minutes of any specific frozen samples in storage. This report describes how this achievement is feasible with emphasis on the actual processing of brains donated for research

    THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors

    Get PDF
    The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
    corecore