150 research outputs found

    Visibility of capillaries in turbid tissues: an analytical approach

    Full text link
    Purpose: Visualization and monitoring of capillary loops in dermis and mucosa are interesting for various clinical applications, including rheumatology, early cancer, and shock detection. However, the limitations of existing imaging technologies are not well understood. Therefore, this study aimed to elucidate peculiarities of the subsurface defect visualization in realistic skin imaging geometries. Methods: We used a perturbation approach for the light propagation in turbid tissues with mismatched boundaries. Defects were considered as negative light sources immersed in homogeneous media, which was described using diffuse approximation. The contrast ratio was used as an image quality metric. Results: We have developed the single point subsurface defect model and extended it to horizontally- and vertically-arranged linear inhomogeneities. In particular, we have obtained explicit analytical expressions for the single point defect and the infinite linear defect buried at a certain depth (horizontally-arranged), which allows direct experimental verification. Conclusions: The developed approach can be used for quick rough estimates while designing and optimizing imaging systems

    Non-invasive transcranial alternating current stimulation of spatially resolved phosphenes

    Get PDF
    This study focused on the use of Non-Invasive Transcranial Alternating Current Stimulation (NITACS) to induce and map phosphenes (spark-like percepts in the visual field) in healthy individuals. The study found optimal stimulation parameters to induce reliable phosphenes without skin irritation or pain. The results suggest NITACS can be used as a tool to investigate the relationship between facial stimulation location and phosphene localization within the field of vision (FOV) and raise questions about the origin of phosphenes generated through NITACS. The outcomes of this study could serve as a source of inspiration for creating non-invasive visual aids in the future

    Remote physiological monitoring of neck blood vessels with a high-speed camera

    Get PDF
    IntroductionSeveral population-based clinical studies suggest that increased Pulse Wave Velocity (PWV) is highly associated with increased cardiovascular disease (CVD) mortality, which is one of the leading causes of death worldwide. Current methods for CVD detection are invasive, expensive, and contact methods, which are not friendly for skin-sensitive patients.MethodsIn this study, we investigated the use of remote photoplethysmography (rPPG) on the neck region using a high-speed camera (2000 frames per second (fps)) to resolve the drawbacks of CVD detection and overcome the limitations of current PWV measurement techniques. Pearson correlation and cross-correlation were used for signal processing and generating the projection map of potential major vessels. A reference signal is selected for the region of interest based on peak value and modulation depth variation. The signal distance and pulse transit time (PPT) between the local and reference signals were calculated using the cross-correlation method and then fitted into a linear regression model for PWV calculation.ResultsThe results revealed areas on the neck that positively and negatively correlated with the selected reference signals, potentially representing the distribution of the main neck vessels - carotid artery and jugular vein- and, consequently, the upstream and downstream blood circulation directions.DiscussionThis research implies the feasibility of touchless estimation of local PWV using a high-speed camera, expanding the potential applications of remote photoplethysmography in aiding the diagnosis of CVD

    Optical Scattering Properties of Intralipid Phantom in Presence of Encapsulated Microbubbles

    Get PDF
    In imaging, contrast agents are utilized to enhance sensitivity and specificity of diagnostic modalities. In ultrasound imaging, microbubbles (MBs)—a gas-core shell-encapsulated agent—are used clinically as contrast agents. The working hypothesis of this study is that microbubbles can be employed as an intravascular contrast agent in optical imaging systems. In this work, the interaction of light and microbubbles in a turbid medium (intralipid) was investigated, particularly, the effect of MBs on the reduced scattering and absorption coefficients. Diffuse reflectance (DR) and total transmittance (TT) measurements of highly scattering intralipid suspension (0.5–5%) were measured using spectroscopic integrating sphere system in the absence and presence of Definity microbubbles. The optical properties were computed using the inverse adding doubling (IAD) software. The presence of microbubbles increased DR and decreased TT of intralipid phantoms. In the presence of MBs (0.5% volume concentration), the reflectance of the intralipid phantom increased from 35% to 100%. The reduced scattering coefficient increased significantly (30%) indicating potential use of MBs as optical contrast agents in light based modalities

    Diffuse reflectance measurements using lensless CMOS imaging chip

    Get PDF
    To assess superficial epithelial microcirculation, a diagnostic tool should be able to detect the heterogeneity of microvasculature, and to monitor qualitative derangement of perfusion in a diseased condition. Employing a lensless CMOS imaging chip with an RGB Bayer filter, experiments were conducted with a microfluidic platform to obtain diffuse reflectance maps. Haemoglobin (Hb) solution (160 g/l) was injected in the periodic channels (grooves) of the microfluidic phantom which were covered with ~250 μm thick layer of intralipid to obtain a diffusive environment. Image processing was performed on data acquired on the surface of the phantom to evaluate the diffuse reflectance from the subsurface periodic pattern. Thickness of the microfluidic grooves, the wavelength dependent contrast between Hb and the background, and effective periodicity of the grooves were evaluated. Results demonstrate that a lens-less CMOS camera is capable of capturing images of subsurface structures with large field of view

    Optical nerve detection by diffuse reflectance spectroscopy for feedback controlled oral and maxillofacial laser surgery

    Get PDF
    Background: Laser surgery lacks haptic feedback, which is accompanied by the risk of iatrogenic nerve damage. It was the aim of this study to investigate diffuse reflectance spectroscopy for tissue differentiation as the base of a feedback control system to enhance nerve preservation in oral and maxillofacial laser surgery. Methods: Diffuse reflectance spectra of nerve tissue, salivary gland and bone (8640 spectra) of the mid-facial region of ex vivo domestic pigs were acquired in the wavelength range of 350-650 nm. Tissue differentiation was performed using principal component (PC) analysis followed by linear discriminant analysis (LDA). Specificity and sensitivity were calculated using receiver operating characteristic (ROC) analysis and the area under curve (AUC). Results: Five PCs were found to be adequate for tissue differentiation with diffuse reflectance spectra using LDA. Nerve tissue could be differed from bone as well as from salivary gland with AUC results of greater than 88%, sensitivity of greater than 83% and specificity in excess of 78%. Conclusions: Diffuse reflectance spectroscopy is an adequate technique for nerve identification in the vicinity of bone and salivary gland. The results set the basis for a feedback system to prevent iatrogenic nerve damage when performing oral and maxillofacial laser surgery

    Novel focused OCT-LIF endoscope

    Get PDF
    Combined optical coherence tomography (OCT) and laser-induced fluorescence (LIF) endoscopy has shown higher sensitivity and specificity for distinguishing normal tissue from adenoma when compared to either modality alone. Endoscope optical design is complicated by the large wavelength difference between the two systems. A new high-resolution endoscope 2 mm in diameter is presented that can create focused beams from the ultraviolet to near-infrared. A reflective design ball lens operates achromatically over a large wavelength range, and employs TIR at two faces and reflection at a third internal mirrored face. The 1:1 imaging system obtains theoretically diffraction-limited spots for both the OCT (1300 nm) and LIF (325 nm) channels

    Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction

    Get PDF
    Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques — which can provide minimally invasive or noninvasive alternatives to biopsy — could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care
    corecore