10 research outputs found

    Inter- and intraspecies comparison of phylogenetic fingerprints and sequence diversity of immunoglobulin variable genes

    No full text
    Protection and neutralization of a vast array of pathogens is accomplished by the tremendous diversity of the B cell receptor (BCR) repertoire. For jawed vertebrates, this diversity is initiated via the somatic recombination of immunoglobulin (Ig) germline elements. While it is clear that the number of these germline segments differs from species to species, the extent of cross-species sequence diversity remains largely uncharacterized. Here we use extensive computational and statistical methods to investigate the sequence diversity and evolutionary relationship between Ig variable (V), diversity (D), and joining (J) germline segments across nine commonly studied species ranging from zebrafish to human. Metrics such as guanine-cytosine (GC) content showed low redundancy across Ig germline genes within a given species. Other comparisons, including amino acid motifs, evolutionary selection, and sequence diversity, revealed species-specific properties. Additionally, we showed that the germline-encoded diversity differs across antibody (recombined V-D-J) repertoires of various B cell subsets. To facilitate future comparative immunogenomics analysis, we created VDJgermlines, an R package that contains the germline sequences from multiple species. Our study informs strategies for the humanization and engineering of therapeutic antibodies

    Burden of seasonal influenza in the Swiss adult population during the 2016/2017–2018/2019 influenza seasons

    No full text
    Background Evidence on the burden of seasonal influenza in Switzerland is scarce, yet it is critical for the design of effective prevention and control measures. The objective of this study was to assess influenza-related resource utilization, health care expenditures and quality-adjusted life-years (QALYs) lost in Switzerland across the 2016/2017–2018/2019 influenza seasons. Methods We retrospectively analyzed multiple real-world data sources to calculate epidemiological and health outcomes, QALYs lost and direct medical costs due to influenza in the Swiss adult population. Subgroups included residents 18–49, 50–64 and 65+ years of age. The observation period was week 26, 2016, to week 25, 2019. Results Across the three seasons, we estimated seasonal averages of 203,090 (se ±26,717) GP visits for ILI 4,944 (se ± 785) influenza-attributable hospitalizations and 1,355 (se ±169) excess deaths attributable to influenza. We estimated a total loss of 8,429 (2016/2017), 11,179 (2017/2018) and 7,701 (2018/2019) QALYs due to influenza. On average, 88% of the loss in QALYs was attributed to premature deaths due to influenza. The total direct medical costs amounted to 44.4 (2016/2017), 77.3 (2017/2018) and 64.5 (2018/2019) million Euros. On average, 79.6% of the total costs arose due to hospitalizations. Conclusions In Switzerland, the burden of influenza on patients and payers is significant and particularly high in the elderly population. Policy interventions to increase vaccination rates as well as the uptake of more effective vaccines among the elderly are needed to reduce the burden of influenza

    Hyperpolarized Metabolic and Parametric CMR Imaging of Longitudinal Metabolic-Structural Changes in Experimental Chronic Infarction

    Full text link
    BACKGROUND Prolonged ischemia and myocardial infarction are followed by a series of dynamic processes that determine the fate of the affected myocardium toward recovery or necrosis. Metabolic adaptions are considered to play a vital role in the recovery of salvageable myocardium in the context of stunned and hibernating myocardium. OBJECTIVES The potential of hyperpolarized pyruvate cardiac magnetic resonance (CMR) alongside functional and parametric CMR as a tool to study the complex metabolic-structural interplay in a longitudinal study of chronic myocardial infarction in an experimental pig model is investigated. METHODS Metabolic imaging using hyperpolarized [1-13^{13}C] pyruvate and proton-based CMR including cine, T1_{1}/T2_{2} relaxometry, dynamic contrast-enhanced, and late gadolinium enhanced imaging were performed on clinical 3.0-T and 1.5-T MR systems before infarction and at 6 days and 5 and 9 weeks postinfarction in a longitudinal study design. Chronic myocardial infarction in pigs was induced using catheter-based occlusion and compared with healthy controls. RESULTS Metabolic image data revealed temporarily elevated lactate-to-bicarbonate ratios at day 6 in the infarcted relative to remote myocardium. The temporal changes of lactate-to-bicarbonate ratios were found to correlate with changes in T2_{2} and impaired local contractility. Assessment of pyruvate dehydrogenase flux via the hyperpolarized [13^{13}C] bicarbonate signal revealed recovery of aerobic cellular respiration in the hibernating myocardium, which correlated with recovery of local radial strain. CONCLUSIONS This study demonstrates the potential of hyperpolarized CMR to longitudinally detect metabolic changes after cardiac infarction over days to weeks. Viable myocardium in the area at risk was identified based on restored pyruvate dehydrogenase flux

    Hyperpolarized Metabolic and Parametric CMR Imaging of Longitudinal Metabolic-Structural Changes in Experimental Chronic Infarction

    No full text
    Background: Prolonged ischemia and myocardial infarction are followed by a series of dynamic processes that determine the fate of the affected myocardium toward recovery or necrosis. Metabolic adaptions are considered to play a vital role in the recovery of salvageable myocardium in the context of stunned and hibernating myocardium. Objectives: The potential of hyperpolarized pyruvate cardiac magnetic resonance (CMR) alongside functional and parametric CMR as a tool to study the complex metabolic-structural interplay in a longitudinal study of chronic myocardial infarction in an experimental pig model is investigated. Methods: Metabolic imaging using hyperpolarized [1-13C] pyruvate and proton-based CMR including cine, T1/T2 relaxometry, dynamic contrast-enhanced, and late gadolinium enhanced imaging were performed on clinical 3.0-T and 1.5-T MR systems before infarction and at 6 days and 5 and 9 weeks postinfarction in a longitudinal study design. Chronic myocardial infarction in pigs was induced using catheter-based occlusion and compared with healthy controls. Results: Metabolic image data revealed temporarily elevated lactate-to-bicarbonate ratios at day 6 in the infarcted relative to remote myocardium. The temporal changes of lactate-to-bicarbonate ratios were found to correlate with changes in T2 and impaired local contractility. Assessment of pyruvate dehydrogenase flux via the hyperpolarized [13C] bicarbonate signal revealed recovery of aerobic cellular respiration in the hibernating myocardium, which correlated with recovery of local radial strain. Conclusions: This study demonstrates the potential of hyperpolarized CMR to longitudinally detect metabolic changes after cardiac infarction over days to weeks. Viable myocardium in the area at risk was identified based on restored pyruvate dehydrogenase flux.ISSN:1936-878XISSN:1876-759

    Platypus: an open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes

    No full text
    High-throughput single-cell sequencing (scSeq) technologies are revolutionizing the ability to molecularly profile B and T lymphocytes by offering the opportunity to simultaneously obtain information on adaptive immune receptor repertoires (VDJ repertoires) and transcriptomes. An integrated quantification of immune repertoire parameters, such as germline gene usage, clonal expansion, somatic hypermutation and transcriptional states opens up new possibilities for the high-resolution analysis of lymphocytes and the inference of antigen-specificity. While multiple tools now exist to investigate gene expression profiles from scSeq of transcriptomes, there is a lack of software dedicated to single-cell immune repertoires. Here, we present Platypus, an open-source software platform providing a user-friendly interface to investigate B-cell receptor and T-cell receptor repertoires from scSeq experiments. Platypus provides a framework to automate and ease the analysis of single-cell immune repertoires while also incorporating transcriptional information involving unsupervised clustering, gene expression and gene ontology. To showcase the capabilities of Platypus, we use it to analyze and visualize single-cell immune repertoires and transcriptomes from B and T cells from convalescent COVID-19 patients, revealing unique insight into the repertoire features and transcriptional profiles of clonally expanded lymphocytes. Platypus will expedite progress by facilitating the analysis of single-cell immune repertoire and transcriptome sequencing.ISSN:2631-926

    Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim)

    No full text
    Abstract Motivation The evolution of antibody repertoires represents a hallmark feature of adaptive B-cell immunity. Recent advancements in high-throughput sequencing have dramatically increased the resolution to which we can measure the molecular diversity of antibody repertoires, thereby offering for the first time the possibility to capture the antigen-driven evolution of B cells. However, there does not exist a repertoire simulation framework yet that enables the comparison of commonly utilized phylogenetic methods with regard to their accuracy in inferring antibody evolution. Results Here, we developed AbSim, a time-resolved antibody repertoire simulation framework, which we exploited for testing the accuracy of methods for the phylogenetic reconstruction of B-cell lineages and antibody molecular evolution. AbSim enables the (i) simulation of intermediate stages of antibody sequence evolution and (ii) the modeling of immunologically relevant parameters such as duration of repertoire evolution, and the method and frequency of mutations. First, we validated that our repertoire simulation framework recreates replicates topological similarities observed in experimental sequencing data. Second, we leveraged Absim to show that current methods fail to a certain extent to predict the true phylogenetic tree correctly. Finally, we formulated simulation-validated guidelines for antibody evolution, which in the future will enable the development of accurate phylogenetic methods. Availability and implementation https://cran.r-project.org/web/packages/AbSim/index.html Supplementary information Supplementary data are available at Bioinformatics online

    DeepSARS: simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2

    No full text
    The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity

    DeepSARS: simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2

    No full text
    Background The continued spread of SARS-CoV-2 and emergence of new variants with higher transmission rates and/or partial resistance to vaccines has further highlighted the need for large-scale testing and genomic surveillance. However, current diagnostic testing (e.g., PCR) and genomic surveillance methods (e.g., whole genome sequencing) are performed separately, thus limiting the detection and tracing of SARS-CoV-2 and emerging variants. Results Here, we developed DeepSARS, a high-throughput platform for simultaneous diagnostic detection and genomic surveillance of SARS-CoV-2 by the integration of molecular barcoding, targeted deep sequencing, and computational phylogenetics. DeepSARS enables highly sensitive viral detection, while also capturing genomic diversity and viral evolution. We show that DeepSARS can be rapidly adapted for identification of emerging variants, such as alpha, beta, gamma, and delta strains, and profile mutational changes at the population level. Conclusions DeepSARS sets the foundation for quantitative diagnostics that capture viral evolution and diversity

    Persistent virus-specific and clonally expanded antibody-secreting cells respond to induced self-antigen in the CNS

    Get PDF
    B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens
    corecore