194 research outputs found

    A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality

    Get PDF
    The Soil Management Assessment Framework (SMAF) was developed to evaluate impacts of land use and management practices on soil quality (SQ), but its suitability for Brazilian tropical soils was unknown. We hypothesized that SMAF would be sensitive enough to detect SQ changes associated with sugarcane (Saccharum officinarum L.) expansion for ethanol production. Field studies were performed at three sites across the south-central region of Brazil, aiming to quantify the impacts of a land use change sequence (i.e., native vegetation–pasture–sugarcane) on SQ. Eight soil indicators were individually scored using SMAF curves developed primarily for North American soils and integrated into an overall Soil Quality Index (SQI) and its chemical, physical, and biological sectors. The SMAF scores were correlated with two other approaches used to assess SQ changes, soil organic C (SOC) stocks and Visual Evaluation of Soil Structure (VESS) scores. Our findings showed that the SMAF was an efficient tool for assessing land use change effects on the SQ of Brazilian tropical soils. The SMAF scoring curves developed using robust algorithms allowed proper assignment of scores for the soil chemical, physical, and biological indicators assessed. The SQI scores were significantly correlated with SOC stocks and VESS scores. Long-term transition from native vegetation to extensive pasture promoted significant decreases in soil chemical, physical, and biological indicators. Overall SQI suggested that soils under native vegetation were functioning at 87% of their potential capacity, while pasture soils were functioning at 70%. Conversions of pasture to sugarcane induced slight improvements in SQ, primarily because of improved soil fertility. Sugarcane soils are functioning at 74% of their potential capacity. Based on this study, management strategies were developed to improve SQ and the sustainability of sugarcane production in Brazil

    Operator Regularization and Large Noncommutative Chern Simons Theory

    Full text link
    We examine noncommutative Chern Simons theory using operator regularization. Both the zeta-function and the eta-function are needed to determine one loop effects. The contributions to these functions coming from the two point function is evaluated. The U(N) noncommutative model smoothly reduces to the SU(N) commutative model as the noncommutative parameter theta_{mu nu} vanishes

    In silico analysis of cytochrome p450 genes involved in the metabolism of diterpenes in Coffea.

    Get PDF
    Brazil is the largest world producer and exporter of coffee, being also the second largest consumer market. Among the main goals of coffee breeders, studies aiming the improvement of cup quality and plant tolerance to biotic and abiotic stresses have extreme importance. Beverage nutraceutical properties and plant defense mechanisms are directly linked to diterpenes present in the lipid fraction of coffee beans, such as cafestol (Caf ) and caveol (Cav). Many members of P 450 gene family are involved in plant secondary metabolism, including diterpenes synthesis. In order to depict biochemical and genetic aspects of diterpenes byosinthesis, we did an in silico characterization of p450 gene family in Coffea spp., and we also quantified Caf and Cav in coffee fruit tissues for further gene expression studies involving diterpens metabolism. Using keyword and Blast search, 1396 ESTs related to Cyt p450 were selected from the Brazilian Coffee Genome Project (http://www.lge.ibi. unicamp.br/cafe). After assembling, we observed 157 putative unigenes, distributed in 92 contigs and 65 singlets. The contigs were analyzed using BLAST X versus public sequences databases (GenBank and Harvest Coffea), confirming their identity to 91 Cyt P450 genes. Expression profiles were inferred by electronic Northern blot of all contigs, allowing the selection of 7 candidate genes for transcriptional analysis based in fruit cDNA library expression. Caf and Cav were measured using HPLC in two different fruit developmental stages: 90 DAF (Days After Flowering) vs 120 DAF and in fruits (120 DAF) treated with 2?M methyl Jasmonate (MJ). Fruits at 120 DAF had an increase of 42% in Cav and 19% in Caf levels in relation to 90DAF fruits. MJ treatment resulted in samples with an average increase of 18% of Cav and 35% of Caf. RNAs were extracted from these samples for future transcriptional analyses. This study establish a platform for expression analysis of cyt P450 candidate genes in RNA samples from tissues with contrasting accumulation of Cav and Caf. (Texte intégral

    Localization for Yang-Mills Theory on the Fuzzy Sphere

    Full text link
    We present a new model for Yang-Mills theory on the fuzzy sphere in which the configuration space of gauge fields is given by a coadjoint orbit. In the classical limit it reduces to ordinary Yang-Mills theory on the sphere. We find all classical solutions of the gauge theory and use nonabelian localization techniques to write the partition function entirely as a sum over local contributions from critical points of the action, which are evaluated explicitly. The partition function of ordinary Yang-Mills theory on the sphere is recovered in the classical limit as a sum over instantons. We also apply abelian localization techniques and the geometry of symmetric spaces to derive an explicit combinatorial expression for the partition function, and compare the two approaches. These extend the standard techniques for solving gauge theory on the sphere to the fuzzy case in a rigorous framework.Comment: 55 pages. V2: references added; V3: minor corrections, reference added; Final version to be published in Communications in Mathematical Physic

    q-Deformed Conformal Quantum Mechanics

    Get PDF
    We construct a q-deformed version of the conformal quantum mechanics model of de Alfaro, Fubini and Furlan for which the deformation parameter is complex and the unitary time evolution of the system is preserved. We also study differential calculus on the q-deformed quantum phase space associated with such system.Comment: 10 pages, LaTeX, revised version with minor corrections to appear in Phys. Rev.

    Black hole thermodynamical entropy

    Full text link
    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy SBGS_{BG} of a (3+1)(3+1) black hole is proportional to its area L2L^2 (LL being a characteristic linear length), and not to its volume L3L^3. Similarly it exists the \emph{area law}, so named because, for a wide class of strongly quantum-entangled dd-dimensional systems, SBGS_{BG} is proportional to lnL\ln L if d=1d=1, and to Ld1L^{d-1} if d>1d>1, instead of being proportional to LdL^d (d1d \ge 1). These results violate the extensivity of the thermodynamical entropy of a dd-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is \emph{not} to be identified with the BG {\it additive} entropy but with appropriately generalized {\it nonadditive} entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle.Comment: 7 pages, 2 figures. Accepted for publication in EPJ

    A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality

    Get PDF
    The Soil Management Assessment Framework (SMAF) was developed to evaluate impacts of land use and management practices on soil quality (SQ), but its suitability for Brazilian tropical soils was unknown. We hypothesized that SMAF would be sensitive enough to detect SQ changes associated with sugarcane (Saccharum officinarum L.) expansion for ethanol production. Field studies were performed at three sites across the south-central region of Brazil, aiming to quantify the impacts of a land use change sequence (i.e., native vegetation–pasture–sugarcane) on SQ. Eight soil indicators were individually scored using SMAF curves developed primarily for North American soils and integrated into an overall Soil Quality Index (SQI) and its chemical, physical, and biological sectors. The SMAF scores were correlated with two other approaches used to assess SQ changes, soil organic C (SOC) stocks and Visual Evaluation of Soil Structure (VESS) scores. Our findings showed that the SMAF was an efficient tool for assessing land use change effects on the SQ of Brazilian tropical soils. The SMAF scoring curves developed using robust algorithms allowed proper assignment of scores for the soil chemical, physical, and biological indicators assessed. The SQI scores were significantly correlated with SOC stocks and VESS scores. Long-term transition from native vegetation to extensive pasture promoted significant decreases in soil chemical, physical, and biological indicators. Overall SQI suggested that soils under native vegetation were functioning at 87% of their potential capacity, while pasture soils were functioning at 70%. Conversions of pasture to sugarcane induced slight improvements in SQ, primarily because of improved soil fertility. Sugarcane soils are functioning at 74% of their potential capacity. Based on this study, management strategies were developed to improve SQ and the sustainability of sugarcane production in Brazil
    corecore