57 research outputs found

    Cascading parallel fractures on Enceladus

    Full text link
    Active eruptions from the south polar region of Saturn's small (~500 km diameter) moon Enceladus are concentrated along a series of lineaments known as the `tiger stripes', thought to be partially open fissures that connect to the liquid water ocean beneath the ice shell. Whereas aspects of the tiger stripes have been addressed in previous work, no study to date simultaneously explains why they should be located only at the south pole, why there are multiple approximately parallel and regularly spaced fractures, and what accounts for their spacing of ~35 km. Here we propose that secular cooling and the resulting ice shell thickening and global tensile stresses cause the first fracture to form at one of the poles, where the ice shell is thinnest due to tidal heating. The tensile stresses are thereby partially relieved, preventing a similar failure at the opposite pole. We propose that subsequent activity then concentrates in the vicinity of the first fracture as the steadily erupted water ice loads the flanks of the open fissure, causing bending in the surrounding elastic plate and further tensile failure in bands parallel to the first fracture, leading to a cascading sequence of parallel fissures until the conditions no longer permit through-going fractures.Comment: 18 pages, 9 figure

    Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere

    Full text link
    Isostatic equilibrium is commonly defined as the state achieved when there are no lateral gradients in hydrostatic pressure, and thus no lateral flow, at depth within the lower viscosity mantle that underlies a planetary body's outer crust. In a constant-gravity Cartesian framework, this definition is equivalent to the requirement that columns of equal width contain equal masses. Here we show, however, that this equivalence breaks down when the spherical geometry of the problem is taken into account. Imposing the "equal masses" requirement in a spherical geometry, as is commonly done in the literature, leads to significant lateral pressure gradients along internal equipotential surfaces, and thus corresponds to a state of disequilibrium. Compared with the "equal pressures" model we present here, the "equal masses" model always overestimates the compensation depth--by ~27% in the case of the lunar highlands and by nearly a factor of two in the case of Enceladus.Comment: 23 pages of text; 3 figures; accepted for publication in GR

    Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan

    Get PDF
    Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth

    Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes.

    Get PDF
    The PROGRESS series (www.progress-partnership.org) sets out a framework of four interlinked prognosis research themes and provides examples from several disease fields to show why evidence from prognosis research is crucial to inform all points in the translation of biomedical and health related research into better patient outcomes. Recommendations are made in each of the four papers to improve current research standards What is prognosis research? Prognosis research seeks to understand and improve future outcomes in people with a given disease or health condition. However, there is increasing evidence that prognosis research standards need to be improved Why is prognosis research important? More people now live with disease and conditions that impair health than at any other time in history; prognosis research provides crucial evidence for translating findings from the laboratory to humans, and from clinical research to clinical practice This first article introduces the framework of four interlinked prognosis research themes and then focuses on the first of the themes - fundamental prognosis research, studies that aim to describe and explain future outcomes in relation to current diagnostic and treatment practices, often in relation to quality of care Fundamental prognosis research provides evidence informing healthcare and public health policy, the design and interpretation of randomised trials, and the impact of diagnostic tests on future outcome. It can inform new definitions of disease, may identify unanticipated benefits or harms of interventions, and clarify where new interventions are required to improve prognosis

    The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.

    Get PDF
    BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care

    Prognosis research strategy (PROGRESS) 4: Stratified medicine research

    Get PDF
    In patients with a particular disease or health condition, stratified medicine seeks to identify thosewho will have the most clinical benefit or least harm from a specific treatment. In this article, thefourth in the PROGRESS series, the authors discuss why prognosis research should form acornerstone of stratified medicine, especially in regard to the identification of factors that predictindividual treatment respons

    Pyrosequencing the Bemisia tabaci Transcriptome Reveals a Highly Diverse Bacterial Community and a Robust System for Insecticide Resistance

    Get PDF
    BACKGROUND: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. METHODOLOGY AND PRINCIPAL FINDINGS: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10-5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. CONCLUSIONS: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis

    Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): Explanation and Elaboration

    Get PDF
    The REMARK “elaboration and explanation” guideline, by Doug Altman and colleagues, provides a detailed reference for authors on important issues to consider when designing, conducting, and analyzing tumor marker prognostic studies
    corecore