30 research outputs found

    A Chiton Uses Aragonite Lenses to Form Images

    Get PDF
    SummaryHundreds of ocelli are embedded in the dorsal shell plates of certain chitons [1]. These ocelli each contain a pigment layer, retina, and lens [2], but it is unknown whether they provide chitons with spatial vision [3]. It is also unclear whether chiton lenses are made from proteins, like nearly all biological lenses, or from some other material [4]. Electron probe X-ray microanalysis and X-ray diffraction revealed that the chiton Acanthopleura granulata has the first aragonite lenses ever discovered. We found that these lenses allow A. granulata's ocelli to function as small camera eyes with an angular resolution of about 9°–12°. Animals responded to the sudden appearance of black, overhead circles with an angular size of 9°, but not to equivalent, uniform decreases in the downwelling irradiance. Our behavioral estimates of angular resolution were consistent with estimates derived from focal length and receptor spacing within the A. granulata eye. Behavioral trials further indicated that A. granulata's eyes provide the same angular resolution in both air and water. We propose that one of the two refractive indices of the birefringent chiton lens places a focused image on the retina in air, whereas the other does so in water

    Modularity in protein evolution: modular organization and de novo domain evolution in mollusc metallothionein

    Get PDF
    Metallothioneins (MTs) are proteins devoted to the control of metal homeostasis and detoxification, and therefore, MTs have been crucial for the adaptation of the living beings to variable situations of metal bioavailability. The evolution of MTs is, however, not yet fully understood, and to provide new insights into it, we have investigated the MTs in the diverse classes of Mollusks. We have shown that most molluskan MTs are bimodular proteins that combine six domains α, β1, β2, β3, γ, and δ in a lineage-specific manner. We have functionally characterized the Neritimorpha β3β1 and the Patellogastropoda γβ1 MTs, demonstrating the metal-binding capacity of the new γ domain. Our results have revealed a modular organization of mollusk MT, whose evolution has been impacted by duplication, loss, and de novo emergence of domains. MTs represent a paradigmatic example of modular evolution probably driven by the structural and functional requirements of metal binding

    Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    Get PDF
    For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    Charting Evolution's Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    No full text
    Abstract For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    The effect of sampling bias on the fossil record of chitons (Mollusca, Polyplacophora)*

    No full text
    Volume: 25Start Page: 87End Page: 9

    Towards a phylogeny of chitons (Mollusca, Polyplacophora) based on combined analysis of five molecular loci. Organisms Diversity

    No full text
    Abstract This study represents the first phylogenetic analysis of the molluscan class Polyplacophora using DNA sequence data. We employed DNA from a nuclear protein-coding gene (histone H3), two nuclear ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), one mitochondrial protein-coding gene (cytochrome c oxidase subunit I), and one mitochondrial ribosomal gene (16S rRNA). A series of analyses were performed on independent and combined data sets. All these analyses were executed using direct optimization with parsimony as the optimality criterion, and analyses were repeated for nine combinations of parameters affecting indel and transversion/transition cost ratios. Maximum likelihood was also explored for the combined molecular data set, also using the direct optimization method, with a model equivalent to GTR + I + Γ that accommodates gaps. The results of all nine parameter sets for the combined parsimony analysis of all molecular data (as well as ribosomal data) and the maximum-likelihood analysis of all molecular data support monophyly of Polyplacophora. The resulting topologies mostly agree with a division of Polyplacophora into two major lineages: Lepidopleuridae and Chitonida (sensu Sirenko 1993). In our analyses the genus Callochiton is positioned as the sister group to Lepidopleuridae, and not as sister group to the remaining Chitonida (sensu BucklandNicks & Hodgson 2000), nor as the sister group to the remaining Chitonina (sensu Buckland-Nicks 1995). Chitonida (excluding Callochiton) is monophyletic, but conventional subgroupings of Chitonida are not supported. Acanthochitonina (sensu Sirenko 1993) is paraphyletic, or alternatively monophyletic, and is split into two clades, both with abanal gills only and cupules in the egg hull, but one has simple cupules whereas the other has more strongly hexagonal cupules. Sister to the Acanthochitonina clades is Chitonina, including taxa with adanal gills and a spiny egg hull. Schizochiton, the only genus with adanal gills that has an egg hull with cupules, is the sister-taxon to one of the Acanthochitonina clades plus Chitonina, or alternatively basal to Chitonina. Support values for either position are low, leaving this relationship unsettled. Our results refute several aspects of conventional classifications of chitons that are based primarily on shell characters, reinforcing the idea that chiton classification should be revised using additional characters

    DNA barcoding Indonesian Acanthopleurinae (Polyplacophora)

    Get PDF
    The approximately 14 recognized species of Acanthopleurinae worldwide include conspicuous and large tropical shore chitons of the genera Acanthopleura, Liolphura, and Squamopleura. They are well studied for their impressive homing behavior, shell eyes (ocelli), radular biomineralization, and bioerosion activities, but have a relatively shallow fossil record, not recorded from before the Miocene. The accessibility of these chitons on the shores of Indonesia made them an excellent test case for new efforts to DNA barcode biodiversity, training and employing Indonesians with the objective of initiating a more complete assessment of biodiversity throughout the Coral Triangle. The latest monographic treatment including Acanthopleurinae was published in 2006 and reports only three members of this taxon in the vicinity of Indonesia: Acanthopleura spinosa (Bruguière 1792), A. gemmata (De Blainville 1825), and Squamopleura miles (Carpenter in Plsbry 1893). Here we apply current and accepted DNA barcoding methods to assess biodiversity in Acanthopleurinae throughout Indonesia, also employing available published or unpublished relevant sequences. Because Indonesian marine research has been historically underrepresented in the international scientific community until recent years, we hypothesized that we would discover new operational taxonomic units (OTUs), which could represent previously-undescribed species. If the Coral Triangle acts as a center of origin of chiton biodiversity, we hypothesized that the phylogenetic positions of the Indonesian chitons will be more derived than described species. Our combined analysis of mitochondrial COI and 16S rDNA gene portions for over 200 Acanthopleurinae from Indonesia has confirmed this expectation. Our preliminary analyses have identified as many as 11 OTUs, indicating that either cryptic species or strong phylogeographic structure are to be expected in this region of known high endemism. We conclude by making recommendations for future intertidal research in Indonesia and the Coral Triangle
    corecore