13 research outputs found
Salivary molecular spectroscopy : a sustainable, rapid and non-invasive monitoring tool for diabetes mellitus during insulin treatment
Monitoring of blood glucose is an invasive, painful and costly practice in diabetes. Consequently, the search for a more cost-effective (reagent-free), non-invasive and specific diabetes monitoring method is of great interest. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used in diagnosis of several diseases, however, applications in the monitoring of diabetic treatment are just beginning to emerge. Here, we used ATR-FTIR spectroscopy to evaluate saliva of non-diabetic (ND), diabetic (D) and insulin-treated diabetic (D+I) rats to identify potential salivary biomarkers related to glucose monitoring. The spectrum of saliva of ND, D and D+I rats displayed several unique vibrational modes and from these, two vibrational modes were pre-validated as potential diagnostic biomarkers by ROC curve analysis with significant correlation with glycemia. Compared to the ND and D+I rats, classification of D rats was achieved with a sensitivity of 100%, and an average specificity of 93.33% and 100% using bands 1452 cm-1 and 836 cm-1, respectively. Moreover, 1452 cm-1 and 836 cm-1 spectral bands proved to be robust spectral biomarkers and highly correlated with glycemia (R2 of 0.801 and 0.788, P < 0.01, respectively). Both PCA-LDA and HCA classifications achieved an accuracy of 95.2%. Spectral salivary biomarkers discovered using univariate and multivariate analysis may provide a novel robust alternative for diabetes monitoring using a non-invasive and green technology
Diagnostic and monitoring applications using Near infrared (NIR) Spectroscopy in cancer and other diseases
Early cancer diagnosis plays a critical role in improving treatment outcomes and increasing survival rates for certain cancers. NIR spectroscopy offers a rapid and cost-effective approach to evaluate the optical properties of tissues at the microvessel level and provides valuable molecular insights. The integration of NIR spectroscopy with advanced data-driven algorithms in portable instruments has made it a cutting-edge technology for medical applications. NIR spectroscopy is a simple, non-invasive and affordable analytical tool that complements expensive imaging modalities such as functional magnetic resonance imaging, positron emission tomography and computed tomography. By examining tissue absorption, scattering, and concentrations of oxygen, water, and lipids, NIR spectroscopy can reveal inherent differences between tumor and normal tissue, often revealing specific patterns that help stratify disease. In addition, the ability of NIR spectroscopy to assess tumor blood flow, oxygenation, and oxygen metabolism provides a key paradigm for its application in cancer diagnosis. This review evaluates the effectiveness of NIR spectroscopy in the detection and characterization of disease, particularly in cancer, with or without the incorporation of chemometrics and machine learning algorithms. The report highlights the potential of NIR spectroscopy technology to significantly improve discrimination between benign and malignant tumors and accurately predict treatment outcomes. In addition, as more medical applications are studied in large patient cohorts, consistent advances in clinical implementation can be expected, making NIR spectroscopy a valuable adjunct technology for cancer therapy management. Ultimately, the integration of NIR spectroscopy into cancer diagnostics promises to improve prognosis by providing critical new insights into cancer patterns and physiology.publishe
Overweight Women with Breast Cancer on Chemotherapy Have More Unfavorable Inflammatory and Oxidative Stress Profiles
Chronic inflammation and redox imbalance are strongly influenced by diet and nutritional status, and both are risk factors for tumor development. This prospective study aimed to explore the associations between inflammatory and antioxidant markers and nutritional status in women with breast cancer undergoing chemotherapy. The women were evaluated at three times: T0, after the infusion of the first cycle; T1, after infusion of the intermediate cycle; and T2, after the infusion of the last chemotherapy cycle. The consumption of antioxidant nutrients and the Total Dietary Antioxidant Capacity reduced between T0 and T2 and the Dietary Inflammatory Index scores increased throughout the chemotherapy. Blood samples taken at the end of the chemotherapy showed lower levels of glutathione reductase and reduced glutathione, with greater quantification of the transcripts for Interleukin-6 and Tumor Necrosis Factor α. It should be emphasized that the Total Dietary Antioxidant Capacity is lower and the Dietary Inflammatory Index is higher in the group of overweight patients at the end of the follow-up, besides showing lower levels of the redox status, especially the plasma levels of glutathione reductase (p = 0.039). In addition, trends towards higher transcriptional levels of cytokines in peripheral blood were observed more often in overweight women than in non-overweight women. In this study of 55 women with breast cancer, nine (16%) with metastases, diet became more pro-inflammatory with fewer antioxidants during the chemotherapy. Briefly, we have shown that chemotherapy is critical for high-risk overweight women due to their reduced intake of antioxidant nutrients, generating greater inflammatory and oxidative stress profiles, suggesting the adoption of healthier dietary practices by women with breast cancer throughout their chemotherapy
Redox Status of Postmenopausal Women with Single or Multiple Cardiometabolic Diseases Has a Similar Response to Mat Pilates Training
Postmenopausal women have a high prevalence of cardiometabolic diseases and that may associate with higher oxidative stress. Exercise can contribute to the treatment of such diseases, but some modalities, such as Mat Pilates, need to be further studied in terms of their physiological responses. Our aim was to investigate the effects of 12 weeks of Mat Pilates on redox status in postmenopausal women with one or multiple comorbidities of cardiometabolic diseases. Forty-four postmenopausal women were divided into two groups: SINGLE, composed of women with one cardiometabolic disease (n = 20) and MULT, with multimorbidity (n = 24). Mat Pilates training was conducted three times a week for 12 weeks, and each session lasted 50 min. Plasma samples were collected before and after training to analyze the following redox markers: superoxide dismutase, catalase, glutathione peroxidase, total antioxidant capacity due to ferric-reducing antioxidant power (FRAP), reduced glutathione (GSH), uric acid, and carbonyl protein. ANCOVA showed interaction effects in FRAP (p = 0.014). Both groups had reduced levels of catalase (p = 0.240) and GSH (p = 0.309), and increased levels of carbonyl protein (p = 0.053) after intervention. In conclusion, the redox status of postmenopausal women shows no changes mediated by Mat Pilates training between SINGLE and MULT, except for greater reductions of FRAP in SINGLE
Antioxidant Responses in Hypertensive Postmenopausal Women after Acute Beetroot Juice Ingestion and Aerobic Exercise: Double Blind and Placebo-Controlled Crossover Trial
This study is aimed to analyze the effect of different nitrate concentrations [NO3-] present in beetroot juice (BJ) on salivary oxidative stress markers after acute exercise performance in hypertensive postmenopausal women. Thirteen hypertensive postmenopausal women participated in three experimental sessions, taking different beverages: noncaloric orange flavored drink (OFD), low nitrate (low-NO3-) BJ, and high nitrate (high-NO3-) BJ. The participants performed aerobic exercise on a treadmill, at 65–70% of heart rate reserve (HRR), for 40 min. Saliva samples were collected after an overnight fast, 10 minutes before BJ ingestion at 7 : 20 am (0′), 120 minutes after beverages ingestion (130′), immediately after exercise (170′), and 90 min after exercise (260′). Salivary total protein (TP), catalase activity (CAT), reduced glutathione (GSH), and total antioxidant capacity by ferric-reducing antioxidant power (FRAP) concentrations were analyzed. No interaction (session∗time) was found among three sessions over time. Catalase area under the curve (AUC) was lower after both low-NO3- and high-NO3- consumption (p<0.001), and GSH AUC was lower after high-NO3- (p<0.001) compared with OFD. So, the acute intake of BJ with aerobic exercise seems to decrease catalase (in high-NO3- and low-NO3-) and GSH (in high-NO3-), besides not interfering with FRAP in hypertensive postmenopausal women
The Effects of Isoflavone Supplementation Plus Combined Exercise on Lipid Levels, and Inflammatory and Oxidative Stress Markers in Postmenopausal Women
This study tested the effect of isoflavone supplementation in addition to combined exercise training on plasma lipid levels, inflammatory markers and oxidative stress in postmenopausal women. Thirty-two healthy and non-obese postmenopausal women without hormone therapy were randomly assigned to exercise + placebo (PLA; n = 15) or exercise + isoflavone supplementation (ISO; n = 17) groups. They performed 30 sessions of combined exercises (aerobic plus resistance) over ten weeks and consumed 100 mg of isoflavone supplementation or placebo. Blood samples were collected after an overnight fast to analyze the lipid profile, interleukin-6 (IL-6), interleukin-8 (IL-8), superoxide dismutase (SOD), total antioxidant capacity (FRAP), and thiobarbituric acid reactive substances (TBARS), before and after ten weeks of the intervention. There were no differences in the changes (pre vs. post) between groups for any of the inflammatory markers, oxidative stress markers or lipid profile variables. However, interleukin-8 was different between pre- and post-tests (p < 0.001) in both groups (Δ = 7.61 and 5.61 pg/mL) as were cholesterol levels (p < 0.05), with no interaction between groups. The combination of isoflavone supplementation and exercise training did not alter oxidative stress markers in postmenopausal women, but exercise training alone may increase IL-8 and decrease total cholesterol levels
Monitoring of Peripheral Blood Leukocytes and Plasma Samples: A Pilot Study to Examine Treatment Response to Leflunomide in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a painful inflammatory disease of the joints which affects a considerable proportion of the world population, mostly women. If not adequately treated, RA patients can become permanently disabled. Importantly, not all the patients respond to the available anti-rheumatic therapies, which also present diverse side effects. In this context, monitoring of treatment response is pivotal to avoid unnecessary side effects and costs towards an ineffective therapy. Herein, we performed a pilot study to investigate the potential use of flow cytometry and attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy as measures to identify responders and non-responders to leflunomide, a disease-modifying drug used in the treatment of RA patients. The evaluation of peripheral blood CD62L+ polymorphonuclear cell numbers and ATR-FTIR vibrational modes in plasma were able to discriminate responders to leflunomide (LFN) three-months after therapy has started. Overall, the results indicate that both flow cytometry and ATR-FTIR can potentially be employed as additional measures to monitor early treatment response to LFN in RA patients