226 research outputs found

    Bergman Kernel from Path Integral

    Full text link
    We rederive the expansion of the Bergman kernel on Kahler manifolds developed by Tian, Yau, Zelditch, Lu and Catlin, using path integral and perturbation theory, and generalize it to supersymmetric quantum mechanics. One physics interpretation of this result is as an expansion of the projector of wave functions on the lowest Landau level, in the special case that the magnetic field is proportional to the Kahler form. This is relevant for the quantum Hall effect in curved space, and for its higher dimensional generalizations. Other applications include the theory of coherent states, the study of balanced metrics, noncommutative field theory, and a conjecture on metrics in black hole backgrounds. We give a short overview of these various topics. From a conceptual point of view, this expansion is noteworthy as it is a geometric expansion, somewhat similar to the DeWitt-Seeley-Gilkey et al short time expansion for the heat kernel, but in this case describing the long time limit, without depending on supersymmetry.Comment: 27 page

    Massive IIA flux compactifications and U-dualities

    Get PDF
    We attempt to find a rigorous formulation for the massive type IIA orientifold compactifications of string theory introduced in hep-th/0505160. An approximate double T-duality converts this background into IIA string theory on a twisted torus, but various arguments indicate that the back reaction of the orientifold on this geometry is large. In particular, an AdS calculation of the entropy suggests a scaling appropriate for N M2-branes, in a certain limit of the compactification, though not the one studied in hep-th/0505160. The M-theory lift of this specific regime is not 4 dimensional. We suggest that the generic limit of the background corresponds to a situation analogous to F-theory, where the string coupling is small in some regions of a compact geometry, and large in others, so that neither a long wavelength 11D SUGRA expansion, nor a world sheet expansion exists for these compactifications. We end with a speculation on the nature of the generic compactification.Comment: JHEP3 LaTeX - 34 pages - 3 figures; v2: Added references; v3: mistake in entropy scaling corrected, major changes in conclusions; v4: changed claims about original DeWolfe et al. setup, JHEP versio

    Statistics of intersecting D-brane models on T^6/Z_6

    Full text link
    We perform a statistical analysis of supersymmetric intersecting D-brane models on the type II orientifold T^6/Z_6. After providing an analytic proof of the finiteness of the number of possible solutions in this setup we study the frequency distributions of properties of the gauge group and the chiral matter content. In particular we search for models with a standard model gauge group and discuss their statistical suppression. The results are compared with the recent studies on T^6/Z_2xZ_2. The analysis is conducted using a statistical method, based on the choice of random subsets of the full ensemble of solutions. This method allows to calculate the total number of models with high precision to 3x10^28.Comment: 29 pages, 9 figures; v2: typos corrected; v3: comments added, section 6 expande

    G(2) quivers

    Get PDF
    We present, in explicit matrix representation and a modernity befitting the community, the classification of the finite discrete subgroups of G2 and compute the McKay quivers arising therefrom. Of physical interest are the classes of Script N = 1 gauge theories descending from M-theory and of mathematical interest are possible steps toward a systematic study of crepant resolutions to smooth G2 manifolds as well as generalised McKay Correspondences. This writing is a companion monograph to hep-th/9811183 and hep-th/9905212, wherein the analogues for Calabi-Yau three- and four-folds were considered

    Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme

    Get PDF
    This paper addresses the problem of efficiently storing and accessing massive data blocks in a large-scale distributed environment, while providing efficient fine-grain access to data subsets. This issue is crucial in the context of applications in the field of databases, data mining and multimedia. We propose a data sharing service based on distributed, RAM-based storage of data, while leveraging a DHT-based, natively parallel metadata management scheme. As opposed to the most commonly used grid storage infrastructures that provide mechanisms for explicit data localization and transfer, we provide a transparent access model, where data are accessed through global identifiers. Our proposal has been validated through a prototype implementation whose preliminary evaluation provides promising results

    Dibaryons from Exceptional Collections

    Full text link
    We discuss aspects of the dictionary between brane configurations in del Pezzo geometries and dibaryons in the dual superconformal quiver gauge theories. The basis of fractional branes defining the quiver theory at the singularity has a K-theoretic dual exceptional collection of bundles which can be used to read off the spectrum of dibaryons in the weakly curved dual geometry. Our prescription identifies the R-charge R and all baryonic U(1) charges Q_I with divisors in the del Pezzo surface without any Weyl group ambiguity. As one application of the correspondence, we identify the cubic anomaly tr R Q_I Q_J as an intersection product for dibaryon charges in large-N superconformal gauge theories. Examples can be given for all del Pezzo surfaces using three- and four-block exceptional collections. Markov-type equations enforce consistency among anomaly equations for three-block collections.Comment: 47 pages, 11 figures, corrected ref

    PP Wave Limit and Enhanced Supersymmetry in Gauge Theories

    Get PDF
    We observe that the pp wave limit of AdS5Ă—M5AdS_5\times M^5 compactifications of type IIB string theory is universal, and maximally supersymmetric, as long as M5M^5 is smooth and preserves some supersymmetry. We investigate a specific case, M5=T1,1M^5=T^{1,1}. The dual N=1{\cal N}=1 SCFT, describing D3-branes at a conifold singularity, has operators that we identify with the oscillators of the light-cone string in the universal pp-wave background. The correspondence is remarkable in that it relies on the exact spectrum of anomalous dimensions in this CFT, along with the existence of certain exceptional series of operators whose dimensions are protected only in the limit of large `t Hooft coupling. We also briefly examine the singular case M5=S5/Z2M^5=S^5/Z_2, for which the pp wave background becomes a Z2Z_2 orbifold of the maximally supersymmetric background by reflection of 4 transverse coordinates. We find operators in the corresponding N=2{\cal N}=2 SCFT with the right properties to describe both the untwisted and the twisted sectors of the closed string.Comment: 15 pages, LaTeX; v2: added more detail to a derivation, and a preprint number; v3: minor corrections, some remarks and references adde

    Enhanced Symmetries in Multiparameter Flux Vacua

    Full text link
    We give a construction of type IIB flux vacua with discrete R-symmetries and vanishing superpotential for hypersurfaces in weighted projective space with any number of moduli. We find that the existence of such vacua for a given space depends on properties of the modular group, and for Fermat models can be determined solely by the weights of the projective space. The periods of the geometry do not in general have arithmetic properties, but live in a vector space whose properties are vital to the construction.Comment: 32 pages, LaTeX. v2: references adde

    Supergravity Duals for N=2 Gauge Theories

    Get PDF
    We construct supergravity solutions for Dp-branes at orbifold points. The solutions are written in terms of a single function, which is the solution to a nonlinear differential equation. The near horizon limits of these solutions are dual, in the AdS/CFT sense, to super-Yang-Mills theories with 8 supercharges in various dimensions. In particular, we present a dual to N=2 SU(N) SYM theory in 3+1 dimensions, and analyse some aspects of the duality.Comment: 15 pages, late

    Symmetric Points in the Landscape as Cosmological Attractors

    Full text link
    In the landscape, if there is to be any prospect of scientific prediction, it is crucial that there be states which are distinguished in some way. The obvious candidates are states which exhibit symmetries. Here we focus on states which exhibit discrete symmetries. Such states are rare, but one can speculate that they are cosmological attractors. We investigate the problem in model landscapes and cosmologies which capture some of the features of candidate flux landscapes. In non-supersymmetric theories we find no evidence that such states might be cosmologically favored. In supersymmetric theories, simple arguments suggest that states which exhibit RR symmetries might be. Our considerations lead us to raise questions about some popular models of eternal inflation.Comment: 27 pages, latex, minor typo correcte
    • …
    corecore