48 research outputs found

    Nuclear factor-kappa B localization and function within intrauterine tissues from term and preterm labor and cultured fetal membranes

    Get PDF
    Abstract Background The objective of this study was to quantify the nuclear localization and DNA binding activity of p65, the major transactivating nuclear factor-kappa B (NF-kappaB) subunit, in full-thickness fetal membranes (FM) and myometrium in the absence or presence of term or preterm labor. Methods Paired full-thickness FM and myometrial samples were collected from women in the following cohorts: preterm no labor (PNL, N = 22), spontaneous preterm labor (PTL, N = 21), term no labor (TNL, N = 23), and spontaneous term labor (STL, N = 21). NF-kappaB p65 localization was assessed by immunohistochemistry, and DNA binding activity was evaluated using an enzyme-linked immunosorbent assay (ELISA)-based method. Results Nuclear p65 labeling was rare in amnion and chorion, irrespective of clinical context. In decidua, nuclear p65 labeling was greater in the STL group relative to the TNL cohort, but there were no differences among the TNL, PTL, and PNL cohorts. In myometrium, diffuse p65 nuclear labeling was significantly associated with both term and preterm labor. There were no significant differences in ELISA-based p65 binding activity in amnion, choriodecidual, and myometrial specimens in the absence or presence of term labor. However, parallel experiments using cultured term fetal membranes demonstrated high levels of p65-like binding even the absence of cytokine stimulation, suggesting that this assay may be of limited value when applied to tissue specimens. Conclusions These results suggest that the decidua is an important site of NF-kappaB regulation in fetal membranes, and that mechanisms other than cytoplasmic sequestration may limit NF-kappaB activation prior to term

    Myoferlin Depletion in Breast Cancer Cells Promotes Mesenchymal to Epithelial Shape Change and Stalls Invasion

    Get PDF
    Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNAMYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF

    Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition

    Get PDF
    A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1Ξ², and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-ΞΊB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals

    Enhanced Survival of Apparent Presynaptic Elements on Polylysine-Coated Beads by Inhibition of Non-Neuronal Cell Proliferation

    No full text
    Increased survival of presynaptic-like neuronal profiles was found in cell cultures of rat cerebellum when the non-neuronal cell numbers were reduced with an antimitotic drug. In both treated and untreated cell cultures, neurites grew onto the polylysine-coated surface of sepharose beads and formed a swelling. The neuronal swelling contained an accumulation of synaptic vesicles and a membrane density at the site of contact with the bead and was called an apparent presynaptic element. The apparent presynaptic elements in untreated cultures increased in number from the time the beads were added to the culture to 7 days incubation and then showed a decrease to one half the 7-day value at 14 days incubation. A 75% reduction in cell division of non-neuronal cells was seen in cultures exposed to a 5 Γ— 10-6 M cytosine arabinoside (Ara-C) for 2 days. Adding polylysine-coated beads to cultures treated with Ara-C showed at 14 days incubation a 7-fold increase in the number of apparent presynaptic elements as compared to untreated cultures. Additional experiments examined the numbers of neurites on the beads and found only small differences between treated and untreated cultures. A decrease, however, was shown in the number of glial fibrillary acidic protein staining astrocytes on the surface of the beads in treated cultures. The reduction of astrocytes by Ara-C appeared to enhance the survival of apparent presynaptic elements but did not enhance the growth of neurites. These results suggest that proliferating non-neuronal cells at a site of injury in the central nervous system may inhibit the formation of synaptic contacts and the growth of neurites through the site of injury

    Insulin and Glucose Modulate Glucose Transporter Messenger Ribonucleic Acid Expression and Glucose Uptake in Trophoblasts Isolated From First-Trimester Chorionic Villi

    No full text
    OBJECTIVE: Our purpose was to determine the effects of insulin and glucose on glucose transport and expression of GLUT1 glucose transporter messenger ribonucleic acid in first-trimester human trophoblast-like cells. STUDY DESIGN: First-trimester human trophoblast-like cells were maintained as a continuous cell line. For 2[3H]deoxy-d-glucose uptake and messenger ribonucleic acid studies the cells were incubated in the presence or absence of insulin (10-7 to 10-11 mol/L) or d-glucose (0 to 50 mmol/L) for 0 to 24 hours. Glucose transport was measured by incubating cells with 0.1 mmol/L,2[3H]deoxy-d-glucose for 5 minutes. Specific uptake was determined by incubating companion cultures with 10 ΞΌmol/L cytochalasin B. The cells were then solubilized with sodium hydroxide and the radioactivity counted. Data were expressed as nanomoles of 2[3H]deoxy-d-glucose transported per milligram of protein per 5 minutes and analyzed by one-way analysis of variance with post hoc testing by the method of Tukey. GLUT1 messenger ribonucleic acid was measured by Northern blotting of total ribonucleic acid samples hybridized to a phosphorus 32-labeled complementary deoxyribonucleic encoding the rat GLUT1 glucose transporter. As a control for loading efficiency, blots were stripped and rehybridized to a 40-mer phosphorus 32-labeled Ξ²-actin oligonucleotide probe. RESULTS: Insulin treatment resulted in a dose-dependent increase in the transport of 2[3H]deoxy-d-glucose at 24 hours (p \u3c 0.001 at 10-7 mol/L). This change was first detected at 12 hours of incubation. These data closely paralled the insulin-induced increase in GLUT1 messenger ribonucleic acid seen in Northern blots. In contrast to insulin, increasing concentrations of d-glucose did not change the transport of 2[3H]deoxy-d-glucose. However, when cells were incubated in low concentrations of d-glucose (0 or 1 mmol/L), an enhancement in the uptake of 2[3H]deoxy-d-glucose (p \u3c 0.001) was observed. Kinetic studies indicated that d-glucose augmentation of 2[3H]deoxy-d-glucose uptake was significant at 9 hours (p \u3c 0.05). The effects of d-glucose on GLUT1 messenger ribonucleic acid expression paralleled the uptake of 2[3H]deoxy-d-glucose, although the modulation of GLUT1 messenger ribonucleic acid levels by glucose was much less pronounced than in insulin-treated cells. CONCLUSION: Although it has been assumed that the placenta has a limited role in influencing glucose transport to the fetus, our in vitro data demonstrate that both insulin and glucose can modulate glucose transport at the cellular level of the placental trophoblast. Thus maternal insulin and glycemic status may influence the expression of GLUT1, the major trophoblast glucose transporter protein, therefore directly affecting first-trimester placental glucose transport. These in vitro data may help explain the association between maternal glucose abnormalities and impaired fetal development during the first trimester when placental GLUT1 messenger ribonucleic acid expression is at its peak

    Agonist-Dependent Downregulation of Progesterone Receptors in Human Cervical Stromal Fibroblasts

    No full text
    Progesterone (P4) maintains uterine quiescence during the majority of pregnancy, whereas diminished progesterone receptor (PR) expression and/or activity (ie, functional P4 withdrawal) promotes parturition. To investigate the regulation of PR expression in cervical stroma, fibroblasts from premenopausal hysterectomy specimens were prepared. Greater than 99% of the cultures were vimentin positive (mesenchymal cell marker) with only occasional cytokeratin-8 positivity (epithelial cell marker) and no evidence of CD31-positive (endothelial cell marker) cells. Cells were immunolabeled with antibodies directed against PRs (PR-A and PR-B), estrogen receptor Ξ± (ER-Ξ±), and glucocorticoid receptor-Ξ±/Ξ² (GR-Ξ±/Ξ²). All cells were uniformly immunopositive for ER-Ξ± and GR-Ξ±/Ξ² but did not express PRs. Incubation of cells with 10βˆ’8 mol/L 17Ξ²-estradiol induced a time-dependent increase in PR-A and PR-B messenger RNAs (mRNAs) by quantitative real-time polymerase chain reactions and proteins by immunoblotting and immunofluorescence. Incubation of cervical fibroblasts with PR ligands (medroxyprogesterone acetate or Org-2058) downregulated PR-A and PR-B levels. Coincubation of cells with PR ligands plus RU-486, a PR antagonist, partially abrogated agonist-induced receptor downregulation. Dexamethasone, a pure glucocorticoid, had no inhibitory effect on PR expression. These results indicate that progestins and estrogens regulate PR expression in cervical fibroblasts. We postulate that hormonal regulation of PR expression in the cervical stroma may contribute to functional P4 withdrawal in preparation for parturition
    corecore