744 research outputs found

    The charm quark mass with dynamical fermions

    Full text link
    We compute the charm quark mass in lattice QCD and compare different formulations of the heavy quark, and quenched data to that with dynamical sea quarks. We take the continuum limit of the quenched data by extrapolating from three different lattice spacings, and compare to data with two flavours of dynamical sea quarks with a mass around the strange at the coarsest lattice spacing. Both the FNAL and ALPHA formalism are used. We find the different heavy quark formulations have the same continuum limit in the quenched approximation, and limited evidence that this approximation overestimates the charm quark mass.Comment: Lattice2004(heavy) 3 pages, 2 figure

    The effect of sea quarks on the mass of the charm quark from Lattice QCD

    Get PDF
    We compute the mass of the charm quark using both quenched and dynamical lattice QCD calculations. We examine the effects of mass dependent lattice artifacts by comparing two different formalisms for the heavy quarks. We take the continuum limit of the charm mass in quenched QCD by extrapolating from three different lattice spacings. At a fixed lattice spacing, the mass of the charm quark is compared between quenched QCD and dynamical QCD with a sea quark mass around strange. In the continuum limit of quenched QCD, we find m_c(m_c)=1.29(7)(13) GeV. No evidence was seen for unquenching.Comment: Added NP analysis of quenched data, corrected error in PCAC RGI mass, updated strange quark mass discussion and references, unified notation and corrected typos. No change in final result. Version accepted for publication in JHE

    The mass of the charm quark from unquenched lattice QCD at fixed lattice spacing

    Get PDF
    We determine the mass of the charm quark (mcm_c) from lattice QCD with two flavors of dynamical quarks with a mass around the strange quark. We compare this to a determination in quenched QCD which has the same lattice spacing (0.1 fm). We investigate different formulations of the quark mass, based on the Vector Ward Identity, PCAC relation and the FNAL heavy quark formalism. Based on these preliminary results we find no effects due to sea quarks with a mass around strange.Comment: Presented at 21st International Symposium on Lattice Field Theory (LATTICE 2003), Tsukuba, Japan, 15-19 July, 200

    Staggered Chiral Perturbation Theory for Heavy-Light Mesons

    Full text link
    We incorporate heavy-light mesons into staggered chiral perturbation theory, working to leading order in 1/m_Q, where m_Q is the heavy quark mass. At first non-trivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light staggered chiral perturbation theory, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the "fourth root trick" to reduce four staggered tastes to one, and of the prescription to represent this trick in the chiral theory by insertions of factors of 1/4 for each sea quark loop.Comment: 48 pages, 6 figures. v3: Some clarifying comments/caveats added; typos fixed. Corresponds to published versio

    The heavy quark's self energy from moving NRQCD on the lattice

    Full text link
    We present a calculation of the heavy quark's self energy in moving NRQCD to one-loop in perturbation theory. Results for the energy shift and external momentum renormalisation are discussed and compared with non-perturbative results. We show that the momentum renormalisation is small, which is the result of a remnant of re-parameterisation invariance on the lattice.Comment: Talk given at Lattice2004(heavy), Fermilab, June 21-26, 200

    Charm and Bottom Quark Masses from Perturbative QCD

    Get PDF
    Using a new result for the first moment of the hadronic production cross section at order O(αs3){\cal O}(\alpha_s^3), and new data on the J/ψJ/\psi and ψ′\psi' resonances for the charm quark, we determine the \msb masses of the charm and bottom quarks to be mˉc(mˉc)=1.295±0.015\bar{m}_c(\bar{m}_c) = 1.295 \pm 0.015 GeV and mˉb(mˉb)=4.205±0.058\bar{m}_b(\bar{m}_b) = 4.205 \pm 0.058 GeV. We assume that the continuum contribution to the sum rules is adequately described by pQCD. While we observe a large reduction of the perturbative error, the shifts induced by the theoretical input are very small. The main change in the central value of mcm_c is related to the experimental data. On the other hand, the value of mbm_b is not changed by our calculation to the assumed precision.Comment: 5 pages, 2 figures, final version as publishe

    The second moment of the pion's distribution amplitude

    Full text link
    We present preliminary results for the second moment of the pion's distribution amplitude. The lattice formulation and the phenomenological implications are briefly reviewed, with special emphasis on some subtleties that arise when the Lorentz group is replaced by the hypercubic group. Having analysed more than half of the available configurations, the result obtained is \xi^2_L = 0.06 \pm 0.02.Comment: Lattice 99 (matrix elements), 3 page

    Analytic solutions of a simple advection-diffusion model of an oxygen transfer device

    Get PDF
    Artificial blood oxygenation is an essential aspect of cardiopulmonary bypass surgery, maintaining physiological levels of oxygen and carbon dioxide in the blood, and thus temporarily replacing the normal function of the lungs. The blood-gas exchange devices used for such procedures have a long history and have had varying degrees of success. In this paper we consider a simple model of a new approach to enhancing the diffusion of oxygen into the blood while it is contained in the artificial blood oxygenator. We show that using a transverse flow, which may be set up using mixing elements that we have previously shown experimentally to enhance blood oxygenation, will increase the oxygen levels within the blood. This simple model and associated analytic solutions can then be used to aid the optimisation of blood oxygenation devices
    • …
    corecore