
ar
X

iv
:h

ep
-l

at
/0

50
80

33
v2

  3
1 

Ja
n 

20
06

Preprint typeset in JHEP style - HYPER VERSION Liverpool Preprint: LTH 662

The effect of sea quarks on the mass of the charm

quark from lattice QCD

UKQCD Collaboration

A. Dougall

Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ UK.

C.M. Maynard

School of Physics, JCMB, Kings Buildings, University of Edinburgh, Edinburgh, EH9

3JZ, UK.

C. McNeile

Theoretical Physics Division, Dept. of Mathematical Sciences, University of Liverpool,

Liverpool L69 3BX, UK
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the charm mass in quenched QCD by extrapolating from three different lattice spacings.
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QCD and dynamical QCD with a sea quark mass around strange. In the continuum

limit of quenched QCD, we find mc(mc) = 1.29(7)(13) GeV. No evidence was seen for

unquenching.
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1. Introduction

The mass of the charm quark is a fundamental parameter of the Standard Model (SM),

and yet its value is rather imprecise. The Particle Data Group [1] quote

1.15 < mMS
charm(mcharm) < 1.35 GeV (1.1)

This is to be contrasted with the more precise value of the mass of the Ds:

mDs = 1.9695(5) GeV (1.2)

from experiment. The problem is of course that quarks are confined hence their mass can

never be directly measured. The imprecise value of the charm mass is just a reflection on

how hard it is to solve QCD from first principles.

The value of the charm mass is important for phenomenology. For instance the uncer-

tainty in the charm quark mass is a big source of uncertainty in the production of charm
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from DIS processes at HERA [2]. Some models of physics beyond the standard model

predict relations between various parameters such as the quark masses. The mass of the

charm quark is also potentially important for understanding kaon decays [3]. See the review

article [4] for a comprehensive review of the mass of the charm quark.

Lattice QCD can determine the hadron spectrum for a given quark mass. This can

then be compared to experiment, and the quark mass tuned until the spectrum produced

matches the experimental one. In practice the systematic uncertainties from the finite

lattice spacing and too heavy sea quarks make this a non-trivial task in general. There

have been many calculations of the mass of the charm quark from quenched QCD [5, 6,

7, 8, 9, 10], however there has not been an estimate of the error due ignoring the effect of

virtual quark anti-quark pairs on the mass of the charm quark.

What effect the sea quarks has on the mass of the charm quark is very difficult to

estimate without simulating full QCD. However, using the running of the quark mass, in

the quenched and NF = 2 world, Mackenzie [11, 12] estimated that sea quarks could reduce

the light quark masses by 10 − 20%. There have been claims that the light quark masses

in unquenched QCD are significantly different to their values in quenched QCD. The CP-

PACS collaboration [13] found that light quark masses with sea quarks were 25% lower

than the quenched results. The recent computation, undertaken jointly by the HPQCD,

MILC and UKQCD collaborations, of the strange quark mass is also significantly less

than the result in quenched QCD [14, 15]. All the above calculations used perturbative

renormalisation.

Recently, there have been a number of two flavour unquenched lattice QCD calcula-

tions, using Wilson or clover fermions, that have found that the strange quark mass is

consistent with the value from quenched QCD [16, 17, 18, 19]. These new calculations

use sea quarks with masses above a third of the strange quark mass, but do consistently

use non-perturbative renormalisation techniques. The use of renormalisation factors, to

two loop accuracy, by the HPQCD and UKQCD collaborations [15] in the analysis of data

from the lattice calculations that use improved staggered fermions moved the value of the

strange quark mass closer to the quenched value, but still remained below it. The sea

quarks used in the lattice calculations with Wilson or clover fermions [16, 17, 18, 19] are

much heavier that those used by the HPQCD, MILC and UKQCD collaborations [14, 15].

The situation is not clear at the moment, but the introduction of sea quarks into a lattice

QCD calculation could reduce the value of the strange quark mass by value between 0%

and 10%.

Only small differences have been found between the mass of the b quark in quenched

and unquenched QCD [20, 21, 22, 23]. The results for quark masses from the lattice have

been reviewed by Lubicz [24], Wittig [25], and Rakow [26].

In this paper we make the first attempt to study the effect of sea quarks on the charm

quark mass. Naively we would expect that the size of this effect would lie between that of

the effect for strange and bottom quark masses.

The mass of the charm quark is sizable in units of the lattice spacing that are compu-

tationally feasible for unquenched calculations, hence the errors from the finite size of the

lattice spacing are of great concern in this paper. There are a number of different lattice
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(β, κsea) Volume a−1 GeV r0 = 0.5fm a−1 GeV r0 = 0.55fm number of configurations

(6.2, 0) 243 × 48 2.913 2.648 216

(6.0, 0) 163 × 48 2.119 1.926 302

(5.93, 0) 163 × 32 1.860 1.691 278

(5.2, 0.1350) 163 × 32 1.876 1.706 395

Table 1: Ensemble of gauge configurations. κsea = 0 denotes a quenched ensemble.

formalisms (recently reviewed by Kronfeld [27], Hashimoto and Onogi [28]), so there are a

number of different ways of organising the calculations.

Following the introduction, in section 2 we discuss the parameters of the lattice cal-

culations. The different definitions of the quark masses are then outlined in section 3,

followed by section 4, in which we describe the perturbative matching factors between the

lattice data and the MS scheme. In section 5 we discuss the methods used to interpolate

from the quark masses at which the calculation was performed to the physical points. The

final sections detail our results and conclusions.

2. Details of the calculation

The gauge fields were generated with Wilson’s plaquette action and the quarks with the

clover action, where the coefficient of the Sheikholeslami-Wohlert term, cSW , has been

determined non-perturbatively (NP). In this way the leading discretisation effects of the

lattice are reduced from O(a) to O(a2) for hadron masses, where a is the lattice spacing.

Whilst this does not guarantee that lattice artifacts are smaller, the continuum limit is

approached as a function of a2.

Hadron correlation functions were computed on three ensembles of gauge field config-

urations in the quenched approximation, β = {6.2, 6.0, 5.93} and one ensemble of config-

urations with the sea quarks, {β = 5.2, κsea = 0.135}. The values of the gauge coupling

and quark mass of this ensemble were chosen so that the lattice spacing is matched to the

coarsest quenched ensemble. The parameters of the lattice calculations are presented in

table 1. We will use the β value to distinguish each ensemble. The UKQCD collabora-

tion has previously presented results and full details of the calculation for the light hadron

spectrum [29] and heavy-light spectrum and currents [30] on the finest two of the three

quenched ensembles, and the light hadron spectrum and currents on the matched quenched

and sea quark ensembles [31]. We have already presented results for the heavy-light spec-

trum on these four ensembles in [32]. Some of the charmonium mass spectrum from the

unquenched data set has been reported in [33]. In this work we extend the analysis to the

correlators necessary to define the mass of the charm quark.

For the β = 6.0 and β = 6.2 data sets, single or double exponential fits were made to

the smeared source and local sink correlators. The gauge invariant smearing formalism of

Boyle was used [34] with the parameters in [30]. For the β = 5.2 and β = 5.93 data sets,

we fitted a variational multi-exponential fitting model to a 2 by 2 matrix of correlators

made from a basis of local and fuzzed operators [35] .
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3. Definitions of the quark mass

There are a number of different ways of calculating a bare lattice quark mass from the

parameters in a lattice QCD calculation. The different definitions of the quark mass have

different O(a) effects. This is clearly seen in quenched calculations where a continuum limit

is required for the two definitions to agree [6, 36]. In this section we discuss various improved

definitions of the quark mass that should have reduced lattice spacing dependence. The

connection between the quark masses from the lattice and those in the continuum MS

scheme is discussed in section 4. In the following we shall use lower cases for the quark

masses and upper cases for the meson masses.

One definition of the quark masses is from the Vector Ward identity

am0 =
1

2

(

1

κ
− 1

κcrit

)

(3.1)

In the mass independent renormalisation scheme of the ALPHA collaboration [37, 38, 39]

the vector definition of the quark mass is O(a) improved using

amI
0 = am0(1 + bmam0) (3.2)

The quark mass can also be defined from the Axial Ward Identity. This is often known

as the PCAC mass. The axial current and pseudo-scalar density are defined as

Aµ(x) = ψ̄i(x)γ5γµψj(x) (3.3)

P (x) = ψ̄i(x)γ5ψj(x)

Although both the Aµ and P operators depend on the flavor indices i and j, for simplicity

we suppress the explicit dependence. The axial current can be improved according to [40]

AI
µ(x) = Aµ(x) + acA∂µP (x) (3.4)

These currents are then renormalised as

JR = ZJ(1 + bJ(amij))J
I (3.5)

where J is either A or P . The bare PCAC quark mass can then be defined in terms of

correlation functions of the bare currents

ampcac,ij =

∑

~x〈∂4A
I
4(x)P (0)〉

2
∑

~x〈P I(x)P (0)〉 (3.6)

and the renormalised quark mass is given by

amI
pcac,ij = [1 + (bA − bp)am0,ij ] ampcac,ij (3.7)

where the quark mass, mq,ij, is given by

amq,i + amq,j = 2amq,ij (3.8)
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for q either 0 or pcac.

The values of the improvement coefficients bJ and cJ are known to one loop in pertur-

bation theory [40, 41]. The improvement coefficients are also known non-perturbatively in

quenched QCD for β > 6.0. The cA coefficient has recently been computed in unquenched

QCD with 2 flavours of clover fermions [42]. We discuss the use of the non-perturbative

improvement factors in section 4.

To make the best use of the existing one loop results we use the tadpole improved

formalism of Lepage and Mackenzie [43]. In this formalism the normalisation of the quark

field changes, √
2κψ →

√
2u0κψ (3.9)

where u0 is defined by

u0 =

〈

1

3
tr [ Uµν(x)]

〉
1
4

(3.10)

Following Bhattacharya et al. [44, 45], the expressions for the coefficients determined by

Sint and Weisz can be re-written to form the tadpole improved expressions

cA = −0.0952αs (3.11)

bP =
1

u0
(1 + 0.8763αs) (3.12)

bA =
1

u0
(1 + 0.8646αs) (3.13)

bm =
1

u0
(−1

2
− 0.685αs) (3.14)

We also investigated other heavy quark formalisms that claim to have a smaller lattice

spacing dependence. For heavy quarks with the improvement coefficients determined from

one-loop perturbation theory the leading cut-off effects will be O(αsam). In particular, for

the dynamical ensemble, for which we cannot take the continuum limit, the lattice space is

coarse (O(am) ∼ 0.6). An effective field theory approach is the FNAL method [46] which

supposes the dominance of O((am)n) cut-off effects over O((ap)2) effects.

The lattice distorts the dispersion relation for a particle in the following way

E2 = M2
1 +

M1

M2
p2 + O(p4) (3.15)

where M1 is the rest mass and M2 is the kinetic mass, defined by

1

M2
=
∂2E

∂p2
k

|p=0 (3.16)

An example of the energies of a typical data set fitted with both the continuum and FNAL

dispersion relations is given in figure 1.

In the Fermilab method it is the kinetic mass that is important for the dynamics of heavy-

heavy and heavy-light bound states. The deviation of M1 from M2 can give a measure of

mass dependent cut-off effects. The quark mass, m1, is defined as

am1 = log(1 + am0) (3.17)
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2

FNAL dispersion relation
continuum dispersion relation

Figure 1: Example of the energies for a typical data set (β = 5.2, κH = 0.1130 and κL = 0.1340),

fitted using the continuum and FNAL dispersion relations.

where m0 is defined in equation (3.1). Note the similarity of m1 to the unrenormalised

RGI mass in equation (3.2), to O(a2) at least, as

log(1 + am) = am− 1

2
(am)2 +

1

3
(am)3 · · · (3.18)

and bm = −1
2 at tree-level. This is the tree-level expression (in g2) for the quark mass, to

all orders in am. A perturbative definition of the kinetic quark mass is given by

am2(am1) =
eam1 sinh(am1)

1 + sinh(am1)
(3.19)

The quark masses, m1 and m2 can be used to get a perturbative definition of the hadron

kinetic mass

aMPT
2 = aM1 + (am2 − am1) (3.20)

In this work we study equation 3.20, both at tree level and at one loop in perturbation

theory.

4. Perturbative matching

We briefly describe the formalism required to extract the quark mass in the MS scheme at

a specific reference scale. Most of the formalism is taken from [47, 36, 48]. We only use

perturbative matching. Non-perturbative matching is discussed in section 4.2.
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4.1 Quark mass renormalisation factors

To extract the quark mass in MS we use the one loop matching factor

mMS
0 (µ) = Zm(aµ)XmI

0(a) (4.1)

where Zm(aµ) is the perturbative matching factor, X is tadpole improvement factor, and

mV I(a) is the bare lattice quark mass.

Zm(aµ) = 1 − α(µ)s
4π

(8 ln(µa) − (CM − tad)) (4.2)

The QCDSF collaboration have published expressions for CM as a function of the coefficient

of the clover term csw [48].

CM =
4

3
(12.952 + 7.738csw − 1.380c2sw) (4.3)

The numerical value of CM = 25.758 for CSW = 1. At one loop it is consistent to use the

one loop value for cSW . Recently, the QCDSF collaboration have claimed substantial differ-

ences between the renormalisation of the vector definition of the quark mass depending on

whether the singlet or non-singlet estimate of the Zm factor is used [16]. In this calculation

there are no charm quarks in the sea, hence only the standard non-singlet renormalisa-

tion factor is used for the vector quark mass. The ALPHA collaboration compute the

connection between the quark mass on the lattice and the renormalisation group invariant

mass [39] using a non-perturbative procedure.

The tadpole improved [43, 36] value for Zm, based on X = 8κcrit, uses tad = 10.66.

For the non-tadpole improved case: X = 1 and tad = 0.

At one loop, in some sense the scale µ in equation 4.1 is a free parameter. In principle

no physical prediction should depend on the value of µ. The dependence on µ is reduced

as the number of loops is increased. Reasonable choices for µ lie in the range from 1/a to

π/a. The “best guess scale” for the µ (called q⋆) , that attempts to minimise higher order

corrections, can in principle be computed using the formalism described by Lepage and

Mackenzie [43]. There has been a recent calculation of the q⋆ for many of the perturbative

expressions required for the PCAC mass [49].

The connection between mMS and the PCAC mass is in 4.4.

mMS
pcac(µ) =

ZA

ZP
mI

pcac (4.4)

The tadpole improved matching factors for the axial and pseudo-scalar operators are [44]:

ZP (µ) = u0

(

1 + αs

(

1

4π
log(aµ)2 − 1.328

))

(4.5)

and

ZA = u0(1 − 0.416αs) (4.6)
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The Fermilab group [50] have computed the connection between the lattice quark

mass and the pole quark mass to all orders in m at one loop order in the expansion of the

coupling.

m1 = m
(0)
1 + g2Z(1)

m1
tanhm

(0)
1 (4.7)

where

Z(1)
m1

= z(1)
m1
e−m

(0)
1 coshm

(0)
1 (pn

A0
(m

(0)
1 )A1

PV (sinh(m
(0)
1 )) − pn

C(m
(0)
1 )B1

PV (sinh(m
(0)
1 ))) (4.8)

The z
(1)
m1 factor is a function of the mass and the clover coefficient that can be reconstructed

from the coefficients of the Chebyshev polynomials [50]. The functions APV , BPV , pA and

pC are functions explicitly quoted in the Fermilab paper [50]. In the limit m1 → 0,

Z(1)
m1

= 0.143 + 0.0653csw − 0.0116c2sw − 1

4π2
log(m

(0)
1 )2 (4.9)

This is the lattice part of the matching factor above. The Z
(1)
m1 factor contains the bm factor

of Sint and Weisz [41]. In the static (infinite mass) limit m
(1)
1 (∞) = 0.168g2 [51].

The one loop expression for the m2 mass is

m
(1)
2 = m2(m

0
1 + g2m0

1)(1 + g2Z
m

(1)
2

) (4.10)

where the function m2 is defined in equation 3.19. The function ZM1
2

is a function of m1

in the paper by the Fermilab group [50].

The tadpole improved definition of the m1 mass is

m̂1
1 = m

(1)
1 +

M̂0

1 + M̂0

u1
0 (4.11)

where u1
0 = 1/12.

The m1 and m2 mass definitions advocated by the Fermilab group are the lattice part

of the matching. To convert the results to the MS scheme, the lattice results have the log

term subtracted from equation 4.9 and the results are multiplied by ZFNAL−>MS(µ).

ZFNAL−>MS(µ) = 1 − αs(µ)

3π
(4 + 6 log(µa)) (4.12)

The importance of subtracting the log term in equations of the form 4.9 has been stressed

by Groote and Shigemitsu [52]. This is equivalent to the continuum matching factor used

by Davies and Thacker [53] and so the matching factor agrees with that in equation 4.2.

In our early presentations [54, 55] we did not subtract the log term from equation 4.9 and

only used the matching factor for the pole mass to the MS scheme.

4.2 Discussion of non-perturbative matching

So far we have only discussed the use of matching factors to one loop in perturbation

theory. There are a number of elegant numerical formalisms that can compute renormal-

isation factors non-perturbatively (see the reviews [56, 57, 58]). These methods promise
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a non-perturbative matching with an accuracy limited by continuum calculations that are

usually known to at least two loops. There is also a program of research into comput-

ing perturbative matching factors, between the lattice and continuum QCD, to two loop

accuracy [59].

A particularly nice example of the power of non-perturbative matching was the com-

putation of the mass of the charm quark in quenched QCD by Rolf and Sint [6]. The

consistent use of the non-perturbative factors from the ALPHA collaboration coupled with

a controlled continuum extrapolation produced a very precise value for the charm mass in

quenched QCD.

There are now many non-perturbative estimates for matching factors from unquenched

QCD with clover fermions [60, 61, 62, 16, 42, 63, 18]. However, at the lattice spacing of

our unquenched data it is not clear that non-perturbative renormalisation factors should

automatically be used, unless the data is part of a consistent continuum extrapolation.

In their calculation of the charm mass in quenched QCD, Rolf and Sint [6] used im-

proved coefficients and renormalisation factors determined non-perturbatively by the AL-

PHA collaboration in quenched QCD. At non-zero lattice spacing there were significant

differences between the vector and PCAC quark masses, that extrapolated to zero as the

continuum limit was taken. Rolf and Sint performed their lattice calculations with lattice

spacings in the range 0.1 to 0.05 fm.

The unquenched data used in this work is at a fixed lattice spacing of 0.1 fm. At

the moment it is computationally prohibitive, to do unquenched calculations with light

sea quark masses and clover fermions, with a lattice spacing of 0.05 fm, using existing

algorithms and computers [64, 65].

The non-perturbative estimates of improvement and matching factors can make the

O(a2) corrections to the quark sizable. There is an O(a) ambiguity to the renormalisation

condition used for the non-perturbative estimate of improvement coefficient or matching

factor. Different conditions can produce different results at non-zero lattice spacing, but

they will agree in the continuum limit.

It has been observed that there is a large O(a) ambiguity in the coefficient cA [44,

45]. This induces an O(a2) ambiguity into the currents. This was noted because of the

disagreement between the perturbative and non-perturbative estimate of cA at a lattice

spacing of 0.1 fm in quenched QCD.

The ALPHA collaboration have also found an O(a) lattice spacing ambiguity in the

coefficients bA − bP [66]. Provided that a consistent definition of the coefficients is used

at each lattice spacing, the continuum will be approached smoothly, and the different

definitions should have the same continuum limit. A discussion of the effect of different

determinations of the improvement coefficients can be found in [30]. In particular, a naive

comparison of the continuum limit of the quenched decay constant fK , with that obtained

using the ALPHA determinations [67], using different determinations of the improvement

coefficients suggests that this is indeed the case.

In quenched QCD, the tadpole improved formalism has been extensively compared

against the non-perturbative results [49]. A difference of 4% between the non-perturbative

estimate and improved perturbative estimate was claimed. For our unquenched data at β =
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5.2, we saw a 10% difference between the tadpole improved estimate of ZA and the recent

non-perturbative estimate [63]. Other groups have claimed to see systematic differences

between using perturbative and non-perturbative renormalisation factors [16, 17, 19].

All current estimates of non-perturbative matching factors are done at leading order

in the quark mass. At the lattice spacings we work at, the O(am) terms are not small.

In figure 2 the various renormalised quark masses are plotted. The coupling for β = 6.0

is used. The renormalisation factors are expanded in both quark mass and coupling. The

ALPHA formalism only treats the quark mass renormalisation to leading order. A large

deviation of the FNAL renormalised quark masses from the masses renormalised using

the ALPHA method would show that a one loop renormalisation factor with all orders in

the quark mass could be closer to the continuum result, than using the ALPHA analysis,

even with non-perturbative matching, at fixed lattice spacing. Of course the ALPHA

renormalisation method is better than the FNAL renormalisation as the lattice spacing

is reduced, but this may not be computationally feasible. There have been attempts to

develop a non-perturbative definition of the FNAL formalism [68, 69].

0 0.2 0.4 0.6 0.8 1
am

0

0

0.5

1

1.5

2

am
r

FNAL m1
FNAL m2
ALPHA numerical
ALPHA perturbative

Figure 2: Renormalised group invariant quark mass as a function of the vector quark mass at β =

6.0. The bursts are the FNAL renormalisation, the diamonds are the renormalised mass from the

numerical calculations of ALPHA [6], and the squares are the perturbatively renormalised masses

from the perturbative expressions in the ALPHA formalism.

A naive application of the ALPHA formulation at a fixed lattice spacing can be prob-

lematic for heavy quarks. For example in figure 2 the renormalisation factors from ALPHA

bend over at masses am ∼ 0.6. These quark masses are too heavy for the use of O(a) im-
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provement at this lattice spacing. If calculations at quark masses larger than the charm

mass are required, then they should be done at a finer lattice spacing. An alternative

strategy is do a heavy quark interpolation in the continuum limit [70].

Although Rolf and Sint have demonstrated that the ALPHA formulation can be used

to compute the mass of the quark charm using data with lattice spacings at and finer than

0.1 fm [6], the lattice spacing errors at 0.1 fm are not small. Given the high computational

cost of reducing the lattice spacing errors in unquenched lattice QCD calculations, we

feel that it is more useful to use tadpole improved perturbation theory to one loop and

investigate the FNAL formalism for this data set. This should give a result closer to the

continuum limit. As the lattice spacing is reduced in unquenched calculations, then the

non-perturbative renormalisation will be crucial in producing results with high accuracy.

4.3 Evolving the quark mass to the charm quark mass

The matching of the quark mass in the lattice scheme to the quark mass in the MS scheme

produces the mass at the scale µ, where µ is chosen, or guessed, to minimise the higher

loop corrections to the perturbative matching factor. It is conventional [1] to evolve the

quark masses from the scale µ to a standard reference scale of mc GeV. This is sometimes

known as the scale invariant mass.

The evolution is done using the solution of the renormalisation group equation

µ2 d

dµ2
m(nf )(µ) = γ

nf
m m(nf )(µ) (4.13)

given by
m(µ)

m(µ0)
=

c(αs(µ)/π)

c(αs(µ0)/π)
(4.14)

The anomalous dimension γ
nf
m is known to four loop order. We use the RunDec [71]

mathematica package to do the evolution.

4.4 Coupling prescription

For the perturbative matching a choice of coupling is required, or equivalently a choice

of ΛQCD. We use the ΛMS computed on the same data set [72]. This allows us to use a

consistent coupling in all stages of the calculation. This is sometimes known as “horizontal

matching” [36, 73]. (The β = 5.95 result is used for the matched quenched data). These

values are also partially quenched. We consistently use nf = 2(0) in all the perturbative

expressions for the dynamical (quenched) data set. The couplings used are presented in

table 2. The coupling α
MS

(q) was calculated at any scale using the standard four loop

evolution equation [71].

5. Interpolations in quark mass

We determined the heavy-light hadron spectrum [32] and the four definitions of the quark

mass for each combination of heavy and light κ value. We used the mass of the Ds (1.9685

GeV) meson to determine the mass of the charm quark. To avoid a large extrapolation
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β κsea a−1 GeV ΛMS MeV αs(a
−1) αs(πa

−1)

6.2 0.0 2.913 230 0.173 0.124

6.0 0.0 2.119 219 0.191 0.133

5.93 0.0 1.860 214 0.198 0.136

5.2 0.1350 1.876 181 0.213 0.149

Table 2: Coupling constants using Λ
MS

from QCDSF-UKQCD collaboration [72]. The scale is set

from r0 = 0.5.

in the light quark mass we don’t use the mass of the D meson, as this is known to be

problematic [74]. As we only have one sea quark mass value, the chiral extrapolation is

only done on the masses of the valence quarks. Hence, we obtain a result for the partially

quenched charm mass.

In our earlier work [54] we used the spin average of the pseudo-scalar and vector masses

of heavy-light mesons, because the pseudo-scalar-vector mass splitting is underestimated

in the quenched QCD. However, we found it difficult to reliably estimate the M2 meson

mass for the vector meson, hence we now only use the pseudo-scalar meson.

The meson masses are first interpolated to the strange quark mass using a simple linear

ansatz

M(ml) = al + blml (5.1)

where ml is the mass of the light quark. We denote this MHs. The strange quark mass has

already been determined by the UKQCD collaboration for these ensembles [30, 75]. The

masses are then interpolated to the charm mass using

M(mQ) = ah + bhmQ (5.2)

wheremQ is the mass of the heavy quark. All the quark masses have corrections which scale

with the quark mass, but the inverse hadron mass scales with quark mass, so it is unclear

whether to plot amQ vs. 1/MHs or vs. MHs [5]. We do the latter as we are interpolating

in a finite range of amQ, where a polynomial in amQ can be expanded in terms of 1/amQ.

Hence we are treating the charm quark as a heavy light quark rather than a light heavy

quark (where HQET based extrapolations would be appropriate). We consistently include

any mass dependent renormalization factors in the definition of mQ. Another option would

have been to do the interpolation without the mass dependent renormalization factors, and

then apply them after the fit.

We use capital M for the meson masses and small m for the quark masses. In our

analysis we consider the options: M1 versus m0, M1 versus mpcac, M1 versus m1, and M2

versus m2. The m1 mass has a different mass behaviour to that of m2 in the heavy quark

limit, so it only really makes sense to match the M2 mass with the m2 mass.

6. Results

In this section we include some examples of the data fits that were performed, present

results at fixed lattice spacing and consider the systematic error associated with mc(mc)

in the continuum limit.
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Figure 3: Example of a typical effective mass plot for the pseudo-scalar meson mass. The fit uses

three exponentials to model data generated at β = 5.2, κH = 0.1130, κL = 0.1340 and p = 1, 0, 0.
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Figure 4: Example of a typical correlator plot for the PCAC mass. The fit uses a constant to

model data generated at β = 5.2, κH = 0.1130, κL = 0.1340 and p = 0.

6.1 Examples of data fits

An effective mass plot for the pseudo-scalar and a plot of the PCAC correlators are pre-

sented in figures 3 and 4 respectively. The heavy quark interpolation formA on the matched
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ensembles is shown in figure 5.

6.2 Results at fixed lattice spacing

As noted in many places (for example [30]), the determination of the M2 meson from the

dispersion relation in equation 3.15 produces masses with bigger errors than for the M1

mass. So we use equation 3.20 to generate a perturbative estimate of the M2 mass.

We test the approach in figures 6 and 7, where the perturbative estimate of M2 is

compared against the non-perturbative estimate from the dispersion relation. At the finer

lattice spacing, β = 6.2, all four definitions of the quark mass essentially agree.

β mpcac m0 m1 m2

5.2 1.327(4)+36
−63 0.952(1)+16

−30 1.247(3)+20
−4 1.266(3)+6

−1

5.93 1.473(4)+37
−64 0.978(1)+15

−28 1.253(3)+19
−5 1.274(2)+5

−0

6.0 1.439(4)+31
−54 1.025(2)+14

−22 1.265(4)+21
−5 1.283(3)+9

−2

6.2 1.352(5)+30
−50 1.147(3)+7

−12 1.267(3)+22
−7 1.279(3)+16

−5

Table 3: The mass of the charm quark in the MS scheme at the charm mass scale, for different

analysis techniques. We use r0 = 0.5 fm as the central value and match at µ = 2/a. The first error

is statistical and the second is due to the perturbative matching.

Our results for the mass of the charm quark are presented in table 3. The most striking

point about the data is the differences between the results for the PCAC and vector masses.

In quenched QCD the difference between the PCAC and vector quark masses is known to

decrease as the continuum limit is taken [36, 6].

We have also used the non-perturbative value for cA which was recently published

in [42] with nf = 2 sea quarks. This reduced the lattice quark masses by 10%, consistent

with the expectations in [42].

In figure 8 the dimensionless quantity r0Mc (where Mc is the RG invariant mass) is

plotted against the square of the lattice spacing. We compare our data to that of other

groups at non-zero lattice spacing.

We used the convention for the renormalisation group invariant mass (mRGI) used by

the ALPHA collaboration [39].

mRGI = m(2b0g
2)−d0/2b0 exp

(

1

2b0g2

)

exp

(
∫ g

0
dη

[

1

β(η)
+

1

b0η3
− b1
b20η

])

(6.1)

This was different to the convention used in the RunDec package [71].

The large splitting between the vector and PCAC definition of the quark mass in our

unquenched data is seen to be consistent with the quenched data of Rolf and Sint. However,

the use of the nonperturbative renormalization factors by Rolf and Sint [6] complicates the

comparison. Figure 8 shows that the agreement between the final answer for the charm

quark mass from [5] and Rolf and Sint [6] is fortuitous. The final result from [5] was

the average of the quark mass from the PCAC and vector currents. This is only a good

estimate if the leading lattice spacing dependence from the PCAC and vector masses have

opposite sign.
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Figure 5: The hadron mass versus the bare quark mass for β = 5.2. The dotted line highlights

the physical meson mass in lattice units.

6.3 Estimating the final systematic error

To set the lattice spacing we use r0 between 0.5 to 0.55 fm. The advantage of using r0 to

determine the lattice spacing is that it is relatively easy to determine the value of r0 in

lattice units. In [32], the results for r0 in physical units, from a number of different calcu-

lations with unquenched Wilson like quarks were reviewed. All the results were between

0.5 and 0.55 fm for r0. The new results from unquenched calculations using improved

staggered fermions [76, 77, 78] are finding r0 values of 0.462(11)(4) fm. The use of the

HPQCD [78] value for r0 in the current generation of unquenched calculations with Wilson

like fermions has been discussed in [23]. The QCDSF collaboration have used the nucleon

mass, in unquenched clover calculations, to estimate r0 = 0.467 fm. However, it is diffi-

cult to do a reliable chiral extrapolation of the nucleon mass in the current generation of

dynamical lattice QCD calculations, that use clover fermions [79], because of the size of

the sea quark masses. For the data in this calculation we feel it is reasonable to use the

estimate of r0 between 0.5 and 0.55 fm.

We now consider the continuum limit of the charm quark mass using the data in table 3.

One issue concerns the dependence of the mass of the charm quark upon the lattice spacing.

One simple model for the dependence of the charm mass at non-zero lattice spacing is

mc(mc, a) = mc(mc)l + sla (6.2)
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Figure 6: The M1 and the M2 mass computed from the dispersion relation, treel level and one

loop in perturbation theory at β = 5.2. The horizontal line represents the physical mass in lattice

units.

The term linear in the lattice spacing comes from the use of improvement to one loop

accuracy. We also tried a continuum extrapolation that was quadratic in the lattice spacing.

mc(mc, a) = mc(mc)q + sqa
2 (6.3)

In table 4 we report the continuum extrapolation of the data in table 3. In figures 9

and 10 the charm mass is plotted as a function of lattice spacing with the fitted continuum

extrapolation using the model in equation 6.3 and 6.2 respectively.

method mMS
c (mc)l GeV sl GeV mc(mc)q GeV sq GeV2

mpcac 1.14(18) 0.64(40) 1.27(10) 0.73(46)

m0 1.45(5) -0.90(13) 1.27(3) -1.0(2)

m1 1.29(7) -0.07(15) 1.28(4) -0.08(17)

m2 1.30(4) -0.05(8) 1.29(2) -0.05(9)

Table 4: Continuum limit of the mass of the charm quark mass in MS at the mass of charm for

different analysis techniques.

Figure 9 shows that a consistent continuum limit is obtained for all four definitions

of quark mass if the extrapolations are done with equation 6.3, however it is difficult to

give a rigorous argument in favour of this type of extrapolation. Figure 10 shows that the
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Figure 7: The M1 and the M2 mass computed from the dispersion relation, tree level and one

loop in perturbation theory at β = 6.2 quenched. The horizontal line represents the physical mass

in lattice units.

continuum limit of the PCAC and vector masses is inconsistent with the FNAL result, if

equation 6.2 is used to take the continuum limit. This fit looks poor and we speculate that

the continuum extrapolation should be done with a combination of linear and quadratic

dependence on the lattice spacing.

We also tried enforcing the same continuum limit for the vector and PCAC masses

with fit parameters for both linear and quadratic terms in the lattice spacing. This gave

mMS
c (mc) = 1.57 ± 0.57 GeV. The fit is plotted in figure 10. Small O(a) terms are not

obtained, as the fit finds that both the O(a) and O(a2) terms are large with opposite sign.

The situation may have become clearer, if we had used quenched QCD calculations at

finer lattice spacings. However this would just repeat the work of Rolf and Sint [6]. To

quote an unquenched result we need a formalism that produces the charm mass with a

very weak dependence on the lattice spacing. As a check on our calculation, in table 5 we

compare our results obtained with ALPHA formalism used by Rolf and Sint [6], with the

results of Rolf and Sint. There is reasonable agreement between the two results.

The continuum extrapolation of them1 andm2 masses is essentially consistent whether

the numbers are extrapolated to the continuum limit either quadratically or linearly with

lattice spacing. The extrapolation of heavy-light decay constants, obtained from calcula-

tions that use the FNAL formalism, were also insensitive to whether a linear or quadratic
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Figure 8: Recent data for the charm mass in the RGI scheme as a function of the lattice spacing.

The filled circles are the results for nf = 2, all the other data is quenched.

β This work Rolf and Sint

mRGI
0 GeV mRGI

pcac GeV mRGI
0 GeV mRGI

pcac GeV

6.0 3.273(39) 4.430(52) 3.224(41) 4.331(59)

6.2 3.768(45) 4.299(49) 3.711(47) 4.277(55)

Table 5: A comparison of the results from this paper with those from Rolf and Sint [6]. The

renormalisation group invariant quark mass at charm for the vector and PCAC quark masses are

reported using nonperturbative renormalisation factors.

extrapolation in lattice spacing was done [80].

For our quenched number we use the m1 number in the continuum limit from a linear

extrapolation in lattice spacing. We also quote an error of 10% to account for variations

in lattice spacing determinations. Hence, our final result for mass of the charm quark in

the continuum limit of quenched QCD is

mc(mc) = 1.29(7)(13) GeV (6.4)

The first error is a combination of statistics and an estimate of the error due to only using

perturbation theory to one loop order.

The data in table 3 do not show any clear pattern for the mass of the charm quark to

differ between quenched and unquenched QCD at the fixed lattice spacing of 0.1 fm, with

sea quarks with masses close to the strange value. Based on the scaling of the masses in
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Figure 9: The quenched continuum limit of the scale invariant charm quark mass. The errors are

from perturbative matching and statistics combined in quadrature. The curves are fits to a slope

with O(a2) dependence only.

quenched QCD, for the unquenched data we use the value of the m1 mass with a 10% error

for determining the lattice spacing. Our best nf = 2 number is

mc(mc) = 1.247(3)+20
−4 (120) GeV (6.5)

7. Conclusions

Our final result is mMS
c (mc) = 1.29(7)(13)GeV in quenched QCD. We found that the

ALPHA and FNAL formulations gave consistent numbers, after making some assumptions

about the lattice spacing dependence. Our result is consistent with previous results from

quenched QCD given in table 6.

We have determined the mass of the charm quark in two flavour QCD at a lattice

spacing of 0.1 fm with a sea quark mass around strange value. We did not observe any

unquenching errors.

The most important task for future unquenched lattice calculations is to control the

lattice spacing errors in the mass of the charm quark. The large scaling violations found in

the charm quark mass (see figure 8) with the improved clover action in quenched QCD can

be controlled by the brute force method of using a lattice spacing of 0.05 fm. The timing
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Figure 10: The quenched continuum limit of the scale invariant charm quark mass. The errors are

from perturbative matching and statistics combined in quadrature. The curves are fits to a slope

with O(a) dependence only. The curve labelled by pcac + m0 is a fit where the pcac and vector

quark masses are forced to have the same continuum limit.

estimates in [64, 65, 81] suggest that this approach will be not be easy for unquenched

calculations because of the large computational cost in reducing the lattice spacing.

The FNAL formalism seems to have a
Group mMS

c (mc)GeV

This work 1.28(3)(13)

Becirevic et al. [5] 1.26(4)(12)

Rolf and Sint [6] 1.301(34)

Juge [7] 1.27(5)

Kronfeld [8] 1.33(8)

Hornbostel et al. [9] 1.20(4)(11)(2)

de Divitiis et al. [10] 1.319(28)

Table 6: Mass of the charm quark mass from

various quenched lattice QCD calculations.

better scaling behaviour than the ALPHA

formalism for this data set. We note that one

of the PCAC quark definitions used by Rolf

and Sint also has a very weak lattice spacing

dependence [6]. The development of better

fermion actions for heavy quark calculations

is clearly desirable [82, 83, 84, 85, 86].

Another important systematic error that

must be reduced originates from matching

the lattice renormalisation scheme onto the

continuum. As we discussed in section 4.2,

there are many lattice techniques for reducing the error on the matching of the quark

masses to the MS scheme. Many of these techniques will benefit from unquenched data

with finer lattice spacings.
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