12 research outputs found

    2,2′,2″-Thiotris(acetic acid) betaine, S(CH 2 COOH) 2 (CH 2 COO), and 2,2′,2″-selenotris(acetic acid) betaine, Se(CH 2 COOH) 2 (CH 2 COO)

    Get PDF
    TThe title compounds, X(CH2COOH)2(CH2COO), X = S, 1, and X = Se, 2, have been characterised by FTIR, NMR and MS and by their crystal structures at 123(2) K. The FTIR spectra show two major peaks, at 1396 and 1731 cm−1 in 1 and at 1390 and 1721 cm−1 in 2. The 77Se NMR signal of 2 at 325.5 ppm is 83.4 ppm downfield from the signal of Se(CH2COOH)2 indicating a substantial selenonium character of 2. The two compounds are isostructural and have a pyramidal configuration. The C—X—C bond angles range from 99.29 to 103.14° in 1 and from 97.56 to 99.87° in 2. The Xsingle bondCsingle bondCdouble bond; length as m-dashO torsion angles for the three substituents are most different; one of the carboxylic acid groups attains the anti-conformation with rather short S⋯O(H) and Se⋯O(H) distances, 2.744 and 2.750 Å, the other acid group is synclinal and with longer S⋯Odouble bond; length as m-dashC and Se⋯Odouble bond; length as m-dashC distances, 3.063 and 3.090 Å, whereas the carboxylate group is in the Xsingle bondCsingle bondC plane with X⋯Osingle bondC distances of 2.869 and 2.908 Å in 1 and 2. The presence of these strong X⋯O interactions is suggested to be the cause for the very low Bronsted basicity of this class of betaines preventing salts of the corresponding acids, the presently unknown [X(CH2COOH)3]+ - cations, to be isolated. The molecules are linked together with two fairly strong but different hydrogen bonds to the carboxylate oxygen atoms with O⋯O distances of 2.493 and 2.580 Å in 1 and 2.489 and 2.581 Å in 2 and with one X⋯Odouble bond; length as m-dashC contact, 3.244 Å in 1 and 3.209 Å in 2. The carbonyl oxygen atoms do not participate significantly in intermolecular hydrogen bonding and there are no contacts between the heteroatoms

    Vitamin E-stabilised UHMWPE for orthopaedic implants:quantitative determination of vitamin E and characterisation of its transformation products

    Get PDF
    The fate of vitamin E and the formation and identification of its transformation products were investigated at different stages of the manufacturing process of commercially produced cross-linked (by γ-irradiation) UHMWPE stabilised with vitamin E (vitamin E infused-post irradiation) used for tibia-components (as articulating surfaces) in total knee arthroplasty (total knee replacement). Vitamin E (α-tocopherol) and its transformation products were extracted from microtomed Tibia films and the different products were separated, isolated, purified using high performance liquid chromatography (HPLC), and characterised by spectroscopic methods and LC-MS. The amount of vitamin E and that of the products formed in the different Tibia samples and in their extracts were also quantified using FTIR and HPLC analysis and calibration curves. Thorough analysis of the Tibia extracts has shown that a number of vitamin E transformation products were formed at different concentrations at two selected stages of the implant manufacturing process that is before and after sterilisation by γ-irradiation. The identified products were found to correspond mainly to different stereoisomeric forms of a small number of vitamin E transformation products. Most of the observed products were of dimeric and trimeric nature with their identity confirmed through a detailed study of their spectral and chromatographic characteristics. It was found that the products of vitamin E, prior to the sterilisation step but after the crosslinking and doping of vitamin E, were mainly the dihydroxydimers and trimers (Tibia samples at this stage are referred to as “Tibia-VEPE”). After sterilisation and completion of the manufacturing process, additional dimers of vitamin E were also formed (Tibia samples at this stage are referred to as ‘Tibia-VEPE-Sterile’), Furthermore, two tocopherol-derived aldehydes (aldehyde 5-formyl-γ-tocopherol and aldehyde 7-formyl-γ-tocopherol) were also formed but at very low concentrations especially in the Tibia-VEPE-Sterile samples. The question of whether vitamin E becomes chemically reacted (grafted) onto the polymer matrix during the manufacturing process of the Tibia is also addressed

    Quantitative and qualitative analysis of biodiesel by NMR spectroscopic methods

    Get PDF
    Biodiesel is an alternate renewable, biodegradable, non-toxic fuel similar to conventional fossil fuel. It is usually produced from vegetable oil, animal fat, tallow, non-edible plant oil and waste cooking oil. Residue oil components and by-products from the production process or contamination during handling and storage could affect the quality of the biodiesel. The molecular compositions of biodiesel samples have been investigated by a combination of NMR spectroscopic methods. The use of NMR spectroscopy is a novel method to biodiesel characterisation is implemented to fully characterise and assign the molecular structure of biodiesel samples and to identify and quantify the moieties of the molecules, particularly the unsaturated long-chain alkyl esters. The NMR spectroscopic method was also implemented to evaluate the transesterification process; the amount of trans-esterified biodiesel in the samples and the amounts of un-reacted different types of glycerides. Furthermore, the NMR spectroscopic method is developed to quantify methanol in biodiesel and proposed here as alternative to the official method

    Selenium carboxylic acids betaine; 3,3′,3″-selenotris(propanoic acid) betaine, Se(CH 2 CH 2 COOH) 2 (CH 2 CH 2 COO)

    Get PDF
    Attempts to prepare [Se(CH2CH2COOH)3]+Cl− from Se(CH2CH2COOH)2 and H2C=CHCOOH in concentrated hydrochloricacid, for the corresponding sulfonium salt, led exclusively to the Se-betaine,Se(CH2CH2COOH)2(CH2CH2COO). The Se-betaine crystallises in the space group P2l/c with the cell dimensions at 223 K, a = 5.5717(1), b = 24.6358(4), c = 8.4361(1) Å, β = 104.762(1)°, V = 1119.74(3) Å3, Z = 4, Dcalc = 1.763 Mgm− 3,μ = 3.364 Mm−1. The structure refined to RI = 0.0223 for 2801 reflections with F0 > 4σ(F0). In the crystalline state the molecule is intermolecularly linked to neighbouring molecules by a number of hydrogen bonds; a very strong carboxylic-carboxylate bond with an O⋯O distance of 2.4435(16) Å, a medium strong carboxylic-carboxylate bond with an O⋯O distance of 2.6431(16) Å and several weak O⋯H(CH2) with O⋯C distances between 3.2 and 3.3 Å. In the carboxylicgroup involved in the very strong hydrogen bond the O⋯H bond is antiperiplanar to the C O bond while the OH bond is periplanar to the C=O bond in the second carboxylic group. Based upon the C-O bond lengths and theelongation of the O-H bond involved in the strong hydrogen bond one may describe the compound as strongly linked units of Se(CH2CH2COOH)(CH2CH2COO)2 rather than Se(CH2CH2COOH)2(CH2CH2COO). The selenium atom forms two strong intramolecular 1,5-Se⋯O contacts, with a carboxylate oxygen atom, 2.9385(12) Å, and with a carboxylicoxygen atom, 2.8979(11) Å. To allow for these contacts the two organic fragments have been forced into the periplanar conformation. The molecule is only slightly asymmetric with regard to the C-Se-C bond angles but is very asymmetric with regard to the torsion angles

    Microwave-assisted synthesis of levulinic acid from low-cost, sustainable feedstocks using organic acids as green catalysts

    Get PDF
    BACKGROUND: Modern day scientific endeavour strives towards global sustainability through the smart utilisation of renewable resources as base materials for chemicals. Until now, the most common commercial process to produce levulinic acid (a mass-produced platform chemical) depends on a two-stage mineral acid-catalysed reaction, which generates harmful environmental waste. In this work, an environmentally friendly levulinic acid production route using less harmful organic acids assisted by microwave heating from biomass feedstocks is reported for the first time. RESULTS: Using aluminum sulfate as a green Lewis acid catalyst and seven organic acids, levulinic acid was successfully produced from barley straw under microwave heating, with maleic acid giving the highest catalytic conversion. A Response Surface Methodology (RSM) approach was used to rapidly and effectively examine the effect of five reaction variables on the productivity of the levulinic acid. A wide range of different biomass wastes (barley straw, brewery waste, olive cake, spent tea leaves and potato, tomato, and mandarin peels) were subsequently screened to produce the levulinic acid. The highest yield of 86 wt% based on cellulose content from mandarin peel (a value comparable to a lengthier ‘non-green’ route) was achieved under the following optimized reaction conditions: 180 °C, 38 min, 2 M maleic acid concentration, 0.1 g Al 2(SO 4) 3 and 1:22 biomass: maleic acid ratio (g mL −1). CONCLUSIONS: The proposed method is a promising new route towards the green, high yield production of levulinic acid from a variety of agricultural and household lignocellulosic biomass wastes, without the need for pre-treatment

    The Effect of the Source and the Concentration of polymers on the Release of Chlorhexidine from Mucoadhesive Buccal Tablets

    Get PDF
    In the current work, two groups of chlorhexidine mucoadhesive buccal tablets were prepared, using either rod or irregularly-shaped spherical particles of hydroxypropyl methylcellulose and different ratios of poloxamer 407 (P407). The tablets were designed to release the drug over two hours. Their physicochemical properties and drug release profiles were investigated. The impact on dry granulation, the ex-vivo mucoadhesion, the swelling index, the morphology of swollen tablets and the drug release kinetic were investigated. Drug-polymers chemical interaction was studied using Fourier Transforms Infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC). Due to different particle shapes, the preparation of dry granules required a 40 KN force for rod-shaped particles compared to 10 KN for the irregularly-shaped spherical particles. All formulations showed at least two-hours residence time using ex-vivo mucoadhesion. Statistically, there was no significant difference in the swelling index, drug release nor its kinetic for both groups. However, the microscopical morphology of the swollen tablet and the size of the pores were affected by particle shape. Increasing the ratio of P407 to 62.5% resulted in a pronounced increase in drug release from around 60% to >90% after two hours. Following the FTIR and DSC analyses, no chemical interaction was noted apart from the steric hindrance effect of P407, which was observed even with the physical mixtures

    New genre of antioxidants from renewable natural resources:synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins

    Get PDF
    Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively

    Investigation of 2-butoxyethanol as biodiesel additive on fuel property and combustion characteristics of two neat biodiesels

    Get PDF
    Neat biodiesels are not preferred for use in the compression ignition (CI) engines due to their high viscosities and related operational difficulties. This study investigated the fuel properties and combustion characteristics when 2-butoxyethanol additive was mixed separately with waste cooking oil biodiesel (W100) and rapeseed oil biodiesel (R100). Compared to neat biodiesels, the viscosities (at 40 ⁰C) of the W100 and R100 were reduced by 12.5% and 9.8% respectively, when they were blended separately with 15% 2-butoxyethanol. Four different samples such as W100, mixture of 85% W100 and 15% 2-Butoxyethanol (W85), R100, mixture of 85 % R100 and 15% 2-Butoxyethanol (R85) were tested in a multi-cylinder CI engine. The thermal efficiency of the W85 fuel was higher than fossil diesel by approximately 3.7%. Total combustion duration of the biodiesel-additive blends were shorter than neat biodiesels and fossil diesel. Biodiesel-additive blends provided approximately 6% higher in-cylinder peak pressures. At full load, W85 fuel gave up to 5.4% reduced NOx emissions than neat biodiesel. The CO, HC and smoke emissions were decreased by up to 36%, 100% and 79% respectively. The study concluded that 2-butoxyethanol could effectively be used as biodiesel additive to improve fuel property; and to achieve better combustion and reduced pollution

    Chlorhexidine Mucoadhesive Buccal Tablets: The Impact of Formulation Design on Drug Delivery and Release Kinetics Using Conventional and Novel Dissolution Methods

    No full text
    Oropharyngeal candidiasis (OPC) is a mucosal infection caused by Candida spp., and it is common among the immunocompromised. This condition is mainly treated using oral antifungals. Chlorhexidine (CHD) is a fungicidal and is available as a mouth wash and oral gel. It is used as an adjuvant in the treatment of OPC due to the low residence time of the current formulations. In this study, its activity was tested against C. albicans biofilm and biocompatibility with the HEK293 human cell line. Then, it was formulated as mucoadhesive hydrogel buccal tablets to extend its activity. Different ratios of hydroxypropyl methylcellulose (HPMC), poloxamer 407 (P407), and three different types of polyols were used to prepare the tablets, which were then investigated for their physicochemical properties, ex vivo mucoadhesion, drug release profiles, and the kinetics of drug release. The release was performed using Apparatus I and a controlled flow rate (CFR) method. The results show that CHD is biocompatible and effective against Candida biofilm at a concentration of 20 µg/mL. No drug excipient interaction was observed through differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The increase in P407 and polyol ratios showed a decrease in the swelling index and an increase in CHD in vitro release. The release of CHD from the selected formulations was 86–92%. The results suggest that chlorhexidine tablets are a possible candidate for the treatment of oropharyngeal candidiasis

    Chlorhexidine mucoadhesive buccal tablets:The impact of formulation design on drug delivery and release kinetics using conventional and novel dissolution methods

    No full text
    Oropharyngeal candidiasis (OPC) is a mucosal infection caused by Candida spp., and it is common among the immunocompromised. This condition is mainly treated using oral antifungals. Chlorhexidine (CHD) is a fungicidal and is available as a mouth wash and oral gel. It is used as an adjuvant in the treatment of OPC due to the low residence time of the current formulations. In this study, its activity was tested against C. albicans biofilm and biocompatibility with the HEK293 human cell line. Then, it was formulated as mucoadhesive hydrogel buccal tablets to extend its activity. Different ratios of hydroxypropyl methylcellulose (HPMC), poloxamer 407 (P407), and three different types of polyols were used to prepare the tablets, which were then investigated for their physicochemical properties, ex vivo mucoadhesion, drug release profiles, and the kinetics of drug release. The release was performed using Apparatus I and a controlled flow rate (CFR) method. The results show that CHD is biocompatible and effective against Candida biofilm at a concentration of 20 μg/mL. No drug excipient interaction was observed through differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The increase in P407 and polyol ratios showed a decrease in the swelling index and an increase in CHD in vitro release. The release of CHD from the selected formulations was 86–92%. The results suggest that chlorhexidine tablets are a possible candidate for the treatment of oropharyngeal candidiasis.</p
    corecore