8 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation

    No full text
    Monterey Bay, CA is an Eastern boundary upwelling system that is nitrogen limited much of the year. In order to resolve population dynamics of microorganisms important for nutrient cycling in this region, we deployed the Environmental Sample Processor with quantitative PCR assays targeting both ribosomal RNA genes and functional genes for subclades of cyanobacteria (Synechococcus) and ammonia-oxidizing Archaea (Thaumarchaeota) populations. Results showed a strong correlation between Thaumarchaea abundances and nitrate during the spring upwelling but not the fall sampling period. In relatively stratified fall waters, the Thaumarchaeota community reached higher numbers than in the spring, and an unexpected positive correlation with chlorophyll concentration was observed. Further, we detected drops in Synechococcus abundance that occurred on short (that is, daily) time scales. Upwelling intensity and blooms of eukaryotic phytoplankton strongly influenced Synechococcus distributions in the spring and fall, revealing what appear to be the environmental limitations of Synechococcus populations in this region. Each of these findings has implications for Monterey Bay biogeochemistry. High-resolution sampling provides a better-resolved framework within which to observe changes in the plankton community. We conclude that controls on these ecosystems change on smaller scales than are routinely assessed, and that more predictable trends will be uncovered if they are evaluated within seasonal (monthly), rather than on annual or interannual scales

    Coordination of microbial metabolism

    No full text
    corecore